Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

[LeetCode] 311. Sparse Matrix Multiplication #311

Open
grandyang opened this issue May 30, 2019 · 0 comments
Open

[LeetCode] 311. Sparse Matrix Multiplication #311

grandyang opened this issue May 30, 2019 · 0 comments

Comments

@grandyang
Copy link
Owner

grandyang commented May 30, 2019

 

Given two sparse matrices A and B , return the result of AB.

You may assume that A 's column number is equal to B 's row number.

Example:

**A** = [
  [ 1, 0, 0],
  [-1, 0, 3]
]

**B** = [
  [ 7, 0, 0 ],
  [ 0, 0, 0 ],
  [ 0, 0, 1 ]
]


     |  1 0 0 |   | 7 0 0 |   |  7 0 0 |
**AB** = | -1 0 3 | x | 0 0 0 | = | -7 0 3 |
                  | 0 0 1 |

 

这道题让我们实现稀疏矩阵相乘,稀疏矩阵的特点是矩阵中绝大多数的元素为0,而相乘的结果是还应该是稀疏矩阵,即还是大多数元素为0,那么使用传统的矩阵相乘的算法肯定会处理大量的0乘0的无用功,所以需要适当的优化算法,使其可以顺利通过 OJ,由于一个 i x k 的矩阵A乘以一个 k x j 的矩阵B会得到一个 i x j 大小的矩阵C,来看结果矩阵中的某个元素C[i][j]是怎么来的,起始是 A[i][0]*B[0][j] + A[i][1]*B[1][j] + ... + A[i][k]*B[k][j],那么为了不重复计算0乘0,首先遍历A数组,要确保 A[i][k] 不为0,才继续计算,然后遍历B矩阵的第k行,如果 B[K][J] 不为0,累加结果矩阵 res[i][j] += A[i][k] * B[k][j],这样就能高效的算出稀疏矩阵的乘法,参见代码如下:

 

解法一:

class Solution {
public:
    vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) {
        vector<vector<int>> res(A.size(), vector<int>(B[0].size()));
        for (int i = 0; i < A.size(); ++i) {
            for (int k = 0; k < A[0].size(); ++k) {
                if (A[i][k] != 0) {
                    for (int j = 0; j < B[0].size(); ++j) {
                        if (B[k][j] != 0) res[i][j] += A[i][k] * B[k][j];
                    }
                }
            }
        }
        return res;
    }
};

 

再来看另一种方法,这种方法其实核心思想跟上面那种方法相同,稍有不同的是用一个二维矩阵矩阵来记录每一行中,各个位置中不为0的列数和其对应的值,然后遍历这个二维矩阵,取出每行中不为零的列数和值,然后遍历B中对应行进行累加相乘,参见代码如下:

 

解法二:

class Solution {
public:
    vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) {
        vector<vector<int>> res(A.size(), vector<int>(B[0].size()));
        vector<vector<pair<int, int>>> v(A.size(), vector<pair<int,int>>());
        for (int i = 0; i < A.size(); ++i) {
            for (int k = 0; k < A[i].size(); ++k) {
                if (A[i][k] != 0) v[i].push_back({k, A[i][k]});
            }
        }
        for (int i = 0; i < A.size(); ++i) {
            for (int k = 0; k < v[i].size(); ++k) {
                int col = v[i][k].first;
                int val = v[i][k].second;
                for (int j = 0; j < B[0].size(); ++j) {
                    res[i][j] += val * B[col][j];
                }
            }
        }
        return res;
    }
};

 

Github 同步地址:

#311

 

类似题目:

Dot Product of Two Sparse Vectors 

 

参考资料:

https://leetcode.com/problems/sparse-matrix-multiplication/

https://leetcode.com/discuss/77235/ac-soluiton-code

https://leetcode.com/discuss/71912/easiest-java-solution

 

LeetCode All in One 题目讲解汇总(持续更新中...)

# for free to join this conversation on GitHub. Already have an account? # to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant