-
Notifications
You must be signed in to change notification settings - Fork 2
/
mirdwt_r.c
executable file
·218 lines (200 loc) · 7.43 KB
/
mirdwt_r.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*
File Name: MIRDWT.c
Last Modification Date: 06/14/95 16:22:45
Current Version: MIRDWT.c 2.4
File Creation Date: Wed Oct 12 08:44:43 1994
Author: Markus Lang <lang@jazz.rice.edu>
Copyright (c) 2000 RICE UNIVERSITY. All rights reserved.
Created by Markus Lang, Department of ECE, Rice University.
This software is distributed and licensed to you on a non-exclusive
basis, free-of-charge. Redistribution and use in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
1. Redistribution of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistribution in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgment: This product includes
software developed by Rice University, Houston, Texas and its contributors.
4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY WILLIAM MARSH RICE UNIVERSITY, HOUSTON, TEXAS,
AND CONTRIBUTORS AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RICE UNIVERSITY
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTIONS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE), PRODUCT LIABILITY, OR OTHERWISE ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
For information on commercial licenses, contact Rice University's Office of
Technology Transfer at techtran@rice.edu or (713) 348-6173
Change History: Fixed the code such that 1D vectors passed to it can be in
either passed as a row or column vector. Also took care of
the code such that it will compile with both under standard
C compilers as well as for ANSI C compilers
Jan Erik Odegard <odegard@ece.rice.edu> Wed Jun 14 1995
Fix minor bug to allow maximum number of levels
MATLAB description:
%function x = mirdwt(yl,yh,h,L);
%
% function computes the inverse redundant discrete wavelet transform y for a
% 1D or 2D input signal. redundant means here that the subsampling after
% each stage of the forward transform has been omitted. yl contains the
% lowpass and yl the highpass components as computed, e.g., by mrdwt. In
% case of a 2D signal the ordering in yh is [lh hl hh lh hl ... ] (first
% letter refers to row, second to column filtering).
%
% Input:
% yl : lowpass component
% yh : highpass components
% h : scaling filter
% L : number of levels. in case of a 1D signal length(yl) must be
% divisible by 2^L; in case of a 2D signal the row and the
% column dimension must be divisible by 2^L.
%
% Output:
% x : finite length 1D or 2D signal
%
% see also: mdwt, midwt, mrdwt
*/
#include <math.h>
#include <stdio.h>
#define max(a, b) ((a) > (b) ? (a) : (b))
#define mat(a, i, j) (*(a + (m*(j)+i))) /* macro for matrix indices */
#ifdef __STDC__
MIRDWT(double *x, int m, int n, double *h, int lh, int L,
double *yl, double *yh)
#else
MIRDWT(x, m, n, h, lh, L, yl, yh)
double *x, *h, *yl, *yh;
int m, n, lh, L;
#endif
{
double *g0, *g1, *ydummyll, *ydummylh, *ydummyhl;
double *ydummyhh, *xdummyl , *xdummyh, *xh;
long i, j;
int actual_L, actual_m, actual_n, c_o_a, ir, n_c, n_cb, n_c_o, lhm1;
int ic, n_r, n_rb, n_r_o, c_o_a_p2n, sample_f;
xh = (double *)mxCalloc(m*n,sizeof(double));
xdummyl = (double *)mxCalloc(max(m,n),sizeof(double));
xdummyh = (double *)mxCalloc(max(m,n),sizeof(double));
ydummyll = (double *)mxCalloc(max(m,n)+lh-1,sizeof(double));
ydummylh = (double *)mxCalloc(max(m,n)+lh-1,sizeof(double));
ydummyhl = (double *)mxCalloc(max(m,n)+lh-1,sizeof(double));
ydummyhh = (double *)mxCalloc(max(m,n)+lh-1,sizeof(double));
g0 = (double *)mxCalloc(lh,sizeof(double));
g1 = (double *)mxCalloc(lh,sizeof(double));
if (n==1){
n = m;
m = 1;
}
/* analysis lowpass and highpass */
for (i=0; i<lh; i++){
g0[i] = h[i]/2;
g1[i] = h[lh-i-1]/2;
}
for (i=1; i<=lh; i+=2)
g1[i] = -g1[i];
lhm1 = lh - 1;
/* 2^L */
sample_f = 1;
for (i=1; i<L; i++)
sample_f = sample_f*2;
actual_m = m/sample_f;
actual_n = n/sample_f;
/* restore yl in x */
for (i=0;i<m*n;i++)
x[i] = yl[i];
/* main loop */
for (actual_L=L; actual_L >= 1; actual_L--){
/* actual (level dependent) column offset */
if (m==1)
c_o_a = n*(actual_L-1);
else
c_o_a = 3*n*(actual_L-1);
c_o_a_p2n = c_o_a + 2*n;
/* go by columns in case of a 2D signal*/
if (m>1){
n_rb = m/actual_m; /* # of row blocks per column */
for (ic=0; ic<n; ic++){ /* loop over column */
for (n_r=0; n_r<n_rb; n_r++){ /* loop within one column */
/* store in dummy variables */
ir = -sample_f + n_r;
for (i=0; i<actual_m; i++){
ir = ir + sample_f;
ydummyll[i+lhm1] = mat(x, ir, ic);
ydummylh[i+lhm1] = mat(yh, ir, c_o_a+ic);
ydummyhl[i+lhm1] = mat(yh, ir,c_o_a+n+ic);
ydummyhh[i+lhm1] = mat(yh, ir, c_o_a_p2n+ic);
}
/* perform filtering and adding: first LL/LH, then HL/HH */
bpconv(xdummyl, actual_m, g0, g1, lh, ydummyll, ydummylh);
bpconv(xdummyh, actual_m, g0, g1, lh, ydummyhl, ydummyhh);
/* store dummy variables in matrices */
ir = -sample_f + n_r;
for (i=0; i<actual_m; i++){
ir = ir + sample_f;
mat(x, ir, ic) = xdummyl[i];
mat(xh, ir, ic) = xdummyh[i];
}
}
}
}
/* go by rows */
n_cb = n/actual_n; /* # of column blocks per row */
for (ir=0; ir<m; ir++){ /* loop over rows */
for (n_c=0; n_c<n_cb; n_c++){ /* loop within one row */
/* store in dummy variable */
ic = -sample_f + n_c;
for (i=0; i<actual_n; i++){
ic = ic + sample_f;
ydummyll[i+lhm1] = mat(x, ir, ic);
if (m>1)
ydummyhh[i+lhm1] = mat(xh, ir, ic);
else
ydummyhh[i+lhm1] = mat(yh, ir, c_o_a+ic);
}
/* perform filtering lowpass/highpass */
bpconv(xdummyl, actual_n, g0, g1, lh, ydummyll, ydummyhh);
/* restore dummy variables in matrices */
ic = -sample_f + n_c;
for (i=0; i<actual_n; i++){
ic = ic + sample_f;
mat(x, ir, ic) = xdummyl[i];
}
}
}
sample_f = sample_f/2;
actual_m = actual_m*2;
actual_n = actual_n*2;
}
}
#ifdef __STDC__
bpconv(double *x_out, int lx, double *g0, double *g1, int lh,
double *x_inl, double *x_inh)
#else
bpconv(x_out, lx, g0, g1, lh, x_inl, x_inh)
double *x_inl, *x_inh, *g0, *g1, *x_out;
int lx, lh;
#endif
{
int i, j;
double x0;
for (i=lh-2; i > -1; i--){
x_inl[i] = x_inl[lx+i];
x_inh[i] = x_inh[lx+i];
}
for (i=0; i<lx; i++){
x0 = 0;
for (j=0; j<lh; j++)
x0 = x0 + x_inl[j+i]*g0[lh-1-j] +
x_inh[j+i]*g1[lh-1-j];
x_out[i] = x0;
}
}