-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraffic_cql_runner.py
291 lines (237 loc) · 10.9 KB
/
traffic_cql_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import torch
import numpy as np
import random
import ipdb
from array2gif import write_gif
from typing import Any, Callable, List, Optional
import argparse
import wandb
from PIL import Image
# from d3rlpy.metrics.scorer import discounted_sum_of_advantage_scorer
# from d3rlpy.metrics.scorer import td_error_scorer
# from d3rlpy.metrics.scorer import average_value_estimation_scorer
from offline_active_rl.active_cql import DiscreteActiveCQLConfig
from d3rlpy.dataset import MDPDataset
from d3rlpy.envs import ChannelFirst
import d3rlpy
import gymnasium as gym
import offline_active_rl.environments
from offline_active_rl.environments.minigrid.wrappers import RGBImgObsWrapper
from minigrid.wrappers import ImgObsWrapper, FullyObsWrapper
def set_seed_everywhere(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def evaluate_on_benchmark_environments_viz(
envs: List[gym.Env],
n_trials: int = 3,
epsilon: float = 0.0,
render: bool = False,
gif: bool = False,
path: Optional[str] = None,
) -> Callable[..., float]:
# for image observation
observation_shape = envs[0].observation_space.shape
is_image = len(observation_shape) == 3
frames = []
def scorer(algo, *args: Any) -> float:
across_env_reward = []
rewards_dict = {}
for env in envs:
episode_rewards = []
for trial_itr in range(n_trials):
observation, _ = env.reset()
episode_reward = 0.0
episode_len = 0
while True:
if gif:
frames.append(np.moveaxis(env.render(), 2, 0))
if np.random.random() < epsilon:
action = env.action_space.sample()
else:
if is_image:
action = algo.predict(np.expand_dims(observation, 0))[0]
else:
action = algo.predict(np.expand_dims(observation, 0))[0]
observation, reward, terminated, truncated, _ = env.step(action)
done = terminated or truncated
episode_reward += reward
episode_len +=1
if done:
break
episode_rewards.append(episode_reward)
print(env.nickname + '- ep len: ', episode_len)
print(env.nickname + '- ep rew: ', episode_reward)
if gif:
print("Saving gif... ", end="")
ipdb.set_trace()
write_gif(np.array(frames), 'gifs/' + env.nickname + '_ep_' + str(trial_itr) + ".gif", fps=3)
print("Done: ", trial_itr)
frames.clear()
# wandb.log(
# {
# "reward_" + env.nickname: float(np.mean(episode_reward)),
# },
# step=algo.epoch
# )
across_env_reward.append(np.mean(episode_reward))
rewards_dict[env.nickname] = np.mean(episode_reward)
return rewards_dict
return scorer
def save_imgs(redstates_dict, redstates_count, step):
for img_hash in redstates_dict.keys():
img = Image.fromarray(redstates_dict[img_hash])
img.save('gifs/runtime/' + str(step) + '_' + str(redstates_count[img_hash]) + '_' + str(img_hash) + ".png")
def main(args):
data_type = 'expert' # args.dataset_type
env_data = args.env_data
dataset_path = 'data/' + env_data + '/' + data_type
grid_states = np.load(dataset_path + '/states.npy')
rgb_states = np.load(dataset_path + '/rgb_states.npy')
actions = np.load(dataset_path + '/actions.npy')
rewards = np.load(dataset_path + '/rewards.npy')
dones = np.load(dataset_path + '/dones.npy')
grid_states_yellow = np.load('data/' + env_data + '/expert_plus_yellow/states.npy')
rgb_states_yellow = np.load('data/' + env_data + '/expert_plus_yellow/rgb_states.npy')
actions_yellow = np.load('data/' + env_data + '/expert_plus_yellow/actions.npy')
rewards_yellow = np.load('data/' + env_data + '/expert_plus_yellow/rewards.npy')
dones_yellow = np.load('data/' + env_data + '/expert_plus_yellow/dones.npy')
# try to remove this and see if entirely unnecc
if True: # no_add_yellow flag was here previously - is this really needed rn? combine these things into single monolithic dataset
rgb_states = np.concatenate((rgb_states, rgb_states_yellow[18:36]))
grid_states = np.concatenate((grid_states, grid_states_yellow[18:36]))
actions = np.concatenate((actions, actions_yellow[18:36].reshape(-1, 1)))
rewards = np.concatenate((rewards, rewards_yellow[18:36]))
dones = np.concatenate((dones, dones_yellow[18:36]))
agent_tl_mask = grid_states[:, 8, 2, 0]==10
print('agent in light:', agent_tl_mask.sum())
tl_mask = grid_states[:, :, :, 0]==11.0
tl_states = grid_states[:, :, :, 1] * tl_mask
tl_states = tl_states.sum(axis=-1).sum(axis=-1)
red_mask = (tl_states==0)
green_mask = (tl_states==1)
print('reds: ', red_mask.sum())
print('greens: ', green_mask.sum())
assert len(grid_states) == len(actions) == len(rewards) == len(dones), "data length mismatch"
print("states shape: ", grid_states.shape)
if not args.confused:
rgb_states[:, 0:8, 0:8] = np.array([100, 100, 100])
states = rgb_states.transpose(0, 3, 1, 2)
meta_states = grid_states.transpose(0, 3, 1, 2)
meta_states = np.ascontiguousarray(meta_states)
states= np.ascontiguousarray(states)
dataset = MDPDataset(
states,
actions,
rewards,
dones,
)
name = args.wandb_name
name = name + '_ncr_' + str(args.n_critics)
wandb.init(
group=name,
job_type=str(args.seed),
project="offline_active_rl",
entity="causalsampling",
config=args,
mode=args.wandb_mode
)
wandb.run.name = name + '_seed' + str(args.seed)
wandb.run.save()
set_seed_everywhere(args.seed)
d3rlpy.seed(args.seed)
env_names = [
'MiniGrid-Simple-No-Traffic-No-Switch-Red-v0',
'MiniGrid-Simple-No-Traffic-No-Switch-Confusion-Green-v0',
'MiniGrid-Simple-Stop-Agent-Switch-v0',
'MiniGrid-Simple-No-Traffic-No-Switch-v0', # sanity check normal env : green traffic signal with nothing else
]
eval_envs = []
for env_name in env_names:
eval_env = gym.make(env_name)
eval_env = FullyObsWrapper(eval_env)
eval_env = ChannelFirst(ImgObsWrapper(RGBImgObsWrapper(eval_env)))
eval_envs.append(eval_env)
train_episodes = dataset
# train_episodes = dataset.episodes # list of episodes with observations of shape (T, 3, 40, 128)
# # save some gifs of the train episodes
# for ep_id, ep_instance in enumerate(train_episodes):
# frames = []
# if ep_id > 10:
# break
# for t in range(len(ep_instance.observations)):
# frames.append(ep_instance.observations[t])
# write_gif(np.array(frames), 'gifs/' + str(ep_id) + ".gif", fps=3)
if args.prune_yellow:
pruned = []
# yellow_eps = [192, 239, 447, 466, 285, 303, 317, 350, 364, 400, 410, 48, 61, 467, 478, 524, 544]
# for ep_instance in train_episodes:
# if ep_instance.ep_id in yellow_eps:
# continue
# else:
# pruned.append(ep_instance)
# train_episodes = pruned
yellow_eps = [92, 108, 125, 133, 192, 239, 447, 466, 285, 303, 317, 350, 364, 400, 410, 48, 61, 467, 478, 524, 544] # 599, 129
for ep_instance in train_episodes:
if ep_instance.ep_id in yellow_eps:
pruned.append(ep_instance)
else:
for i in range(args.data_multiply):
pruned.append(ep_instance)
random.shuffle(pruned)
train_episodes = pruned
cql = DiscreteActiveCQLConfig(
learning_rate=args.lr,
optim_factory=d3rlpy.models.optimizers.AdamFactory(eps=1e-2 / 32),
batch_size=args.batch_size,
alpha=args.alpha_cql,
n_critics=args.n_critics,
# encoder_factory='default',
observation_scaler=d3rlpy.preprocessing.PixelObservationScaler(),
target_update_interval=args.target_update_interval,
acq_func=args.acq_func,
init_rand_sample_epochs=args.init_rand_sample_epochs,
indep_ensemble=args.indep_ensemble,
num_bkwds=args.num_bkwds,
).create(device=True)
cql.fit(train_episodes,
save_interval=args.save_interval,
n_steps=args.epochs*args.n_steps_per_epoch,
n_steps_per_epoch=args.n_steps_per_epoch,
evaluators={
'environment': evaluate_on_benchmark_environments_viz(eval_envs, gif=args.make_gif),
# 'advantage': discounted_sum_of_advantage_scorer, # smaller is better
# 'td_error': td_error_scorer, # smaller is better
# 'value_scale': average_value_estimation_scorer, # smaller is better
},
experiment_name=name + '_seed' + str(args.seed),
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--save_interval', type=int, default=200)
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--target_update_interval', type=int, default=4)
parser.add_argument('--n_steps_per_epoch', type=int, default=50)
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument("--lr", default=1e-4, type=float)
parser.add_argument("--alpha_cql", default=4.0, type=float)
parser.add_argument('--wandb_mode', choices=['dryrun', 'dryrun_offline', 'online'], default='dryrun')
parser.add_argument('--wandb_name', default='')
parser.add_argument("--env_data", default="MiniGrid-Simple-Stop-Light-Rarely-Switch-v0", type=str)
parser.add_argument('--n_critics', type=int, default=1)
parser.add_argument("--indep_ensemble", action="store_true", default=False)
parser.add_argument("--share_encoder", action="store_true", default=False)
parser.add_argument("--prune_yellow", action="store_true", default=False)
parser.add_argument("--clip_grad", default=1.0, type=float)
parser.add_argument("--confused", action="store_true", default=False)
parser.add_argument("--data_multiply", default=1, type=int)
parser.add_argument("--init_rand_sample_epochs", default=1, type=int)
parser.add_argument("--num_bkwds", default=1, type=int)
parser.add_argument('--acq_func', choices=['random', 'mu_realadv', 'mu_indepadv'], default='random')
parser.add_argument("--datapath", default="/users/gunpta/code/activesampling/", type=str)
parser.add_argument("--make_gif", action="store_true", default=False)
args = parser.parse_args()
main(args)