diff --git a/automatminer/automl/adaptors.py b/automatminer/automl/adaptors.py index ebf5de3e..81897fc6 100644 --- a/automatminer/automl/adaptors.py +++ b/automatminer/automl/adaptors.py @@ -51,8 +51,8 @@ class TPOTAdaptor(AutoMLAdaptor, LoggableMixin): } logger (Logger, bool): A custom logger object to use for logging. - Alternatively, if set to True, the default automatminer logger will be - used. If set to False, then no logging will occur. + Alternatively, if set to True, the default automatminer logger will + be used. If set to False, then no logging will occur. Attributes: The following attributes are set during fitting. @@ -82,6 +82,8 @@ def __init__(self, logger=True, **tpot_kwargs): self._logger = self.get_logger(logger) self.is_fit = False self.random_state = tpot_kwargs.get('random_state', None) + self._ml_data = None + self.greater_score_is_better = None @set_fitted def fit(self, df, target, **fit_kwargs): @@ -114,7 +116,8 @@ def fit(self, df, target, **fit_kwargs): self._backend = TPOTRegressor(**self.tpot_kwargs) else: raise ValueError("Learning type {} not recognized as a valid mode " - "for {}".format(self.mode, self.__class__.__name__)) + "for {}".format(self.mode, + self.__class__.__name__)) self._features = df.drop(columns=target).columns.tolist() self._ml_data = {"X": X, "y": y} self.fitted_target = target @@ -129,6 +132,9 @@ def best_models(self): """ The best models found by TPOT, in order of descending performance. + If you want a pipeline you can use to make predtions, use the + best_pipeline. + Performance is evaluated based on the TPOT scoring. This can be changed by passing a "scoring" kwarg into the __init__ method. @@ -211,45 +217,134 @@ def predict(self, df, target): not_in_model = [f for f in self._features if f not in df.columns] not_in_df = [f for f in df.columns if f not in self._features] raise AutomatminerError("Features used to build model are different" - " from df columns! Features located in model " - "not located in df: \n{} \n Features located " - "in df not in model: \n{}".format(not_in_df, - not_in_model)) + " from df columns! Features located in " + "model not located in df: \n{} \n Features " + "located in df not in model: \n{}" + "".format(not_in_df, not_in_model)) else: X = df[self._features].values # rectify feature order y_pred = self._backend.predict(X) df[target + " predicted"] = y_pred - self.logger.debug("Prediction finished successfully.") + self.logger.info("Prediction finished successfully.") return df -if __name__ == "__main__": - from matminer.datasets.dataset_retrieval import load_dataset - from automatminer.featurization import AutoFeaturizer - from automatminer.preprocessing import DataCleaner, FeatureReducer - - # Load a dataset - df = load_dataset("elastic_tensor_2015").rename( - columns={"formula": "composition"})[["composition", "K_VRH"]] - testdf = df.iloc[501:550] - traindf = df.iloc[:100] - target = "K_VRH" - - # Get top-lvel transformers - autofeater = AutoFeaturizer() - cleaner = DataCleaner() - reducer = FeatureReducer() - learner = TPOTAdaptor("regression", max_time_mins=5) - - # Fit transformers on training data - traindf = autofeater.fit_transform(traindf, target) - traindf = cleaner.fit_transform(traindf, target) - traindf = reducer.fit_transform(traindf, target) - learner.fit(traindf, target) - - # Use transformers on testing data - testdf = autofeater.transform(testdf, target) - testdf = cleaner.transform(testdf, target) - testdf = reducer.transform(testdf, target) - testdf = learner.predict(testdf, target) - print(testdf) +class SinglePipelineAdaptor(AutoMLAdaptor, LoggableMixin): + """ + For running single models or pipelines in a MatPipe pipeline using the same + syntax as the AutoML adaptors. + + This adaptor should be able to fit into a MatPipe in similar fashion to + TPOTAdaptor. + + Args: + model (sklearn Pipeline or BaseEstimator-like): The object you want to + use for machine learning. Must implement fit/predict/transform + methods analagously to BaseEstimator, but does not need to be a + BaseEstimator or Pipeline. + """ + + def __init__(self, model, logger=True): + self._logger = self.get_logger(logger) + self._backend = model + self._features = None + self._ml_data = None + self.fitted_target = None + + @set_fitted + def fit(self, df, target, **fit_kwargs): + # Prevent goofy pandas casting by casting to native + y = df[target].values.tolist() + X = df.drop(columns=target).values.tolist() + self._features = df.drop(columns=target).columns.tolist() + self._ml_data = {"X": X, "y": y} + self.fitted_target = target + model_name = self._backend.__class__.__name__ + self.logger.info("{} fitting started.".format(model_name)) + self._backend.fit(X, y) + self.logger.info("{} fitting finished.".format(model_name)) + + # todo: Remove this duplicated code section, maybe just make a parent class + @check_fitted + def predict(self, df, target): + """ + Predict the target property of materials given a df of features. + + The predictions are appended to the dataframe in a column called: + "{target} predicted" + + Args: + df (pandas.DataFrame): Contains all features needed for ML (i.e., + all features contained in the training dataframe. + target (str): The property to be predicted. Should match the target + used for fitting. May or may not be present in the argument + dataframe. + + Returns: + (pandas.DataFrame): The argument dataframe plus a column containing + the predictions of the target. + + """ + if target != self.fitted_target: + raise AutomatminerError("Argument dataframe target {} is different " + "from the fitted dataframe target! {}" + "".format(target, self.fitted_target)) + elif not all([f in df.columns for f in self._features]): + not_in_model = [f for f in self._features if f not in df.columns] + not_in_df = [f for f in df.columns if f not in self._features] + raise AutomatminerError("Features used to build model are different" + " from df columns! Features located in " + "model not located in df: \n{} \n Features " + "located in df not in model: \n{}" + "".format(not_in_df, not_in_model)) + else: + X = df[self._features].values # rectify feature order + y_pred = self._backend.predict(X) + df[target + " predicted"] = y_pred + self.logger.info("Prediction finished successfully.") + return df + + @property + @check_fitted + def _best_pipeline(self): + return self._backend + + +# if __name__ == "__main__": +# from matminer.datasets.dataset_retrieval import load_dataset +# from automatminer.featurization import AutoFeaturizer +# from automatminer.preprocessing import DataCleaner, FeatureReducer +# from sklearn.ensemble import RandomForestRegressor +# from sklearn.linear_model import SGDRegressor +# from sklearn.pipeline import Pipeline +# from sklearn.preprocessing import StandardScaler +# +# # Load a dataset +# df = load_dataset("elastic_tensor_2015").rename( +# columns={"formula": "composition"})[["composition", "K_VRH"]] +# testdf = df.iloc[501:550] +# traindf = df.iloc[:100] +# target = "K_VRH" +# +# # Get top-lvel transformers +# autofeater = AutoFeaturizer() +# cleaner = DataCleaner() +# reducer = FeatureReducer() +# # learner = TPOTAdaptor("regression", max_time_mins=5) +# learner = SinglePipelineAdaptor(model=RandomForestRegressor()) +# learner = SinglePipelineAdaptor(model= +# Pipeline([('scaler', StandardScaler()), +# ('rfr', RandomForestRegressor())])) +# +# # Fit transformers on training data +# traindf = autofeater.fit_transform(traindf, target) +# traindf = cleaner.fit_transform(traindf, target) +# traindf = reducer.fit_transform(traindf, target) +# learner.fit(traindf, target) +# +# # Use transformers on testing data +# testdf = autofeater.transform(testdf, target) +# testdf = cleaner.transform(testdf, target) +# testdf = reducer.transform(testdf, target) +# testdf = learner.predict(testdf, target) +# print(testdf[["K_VRH", "K_VRH predicted"]])