18/10/12

FINAL YEAR PROJECT 2012
FINAL REPORT (REV B)

REALTIME ROUTE LEARNING
AND VEHICLE TRACKING
USING WEB-TECHNOLOGIES
ON A MOBILE DEVICE

HADI MICHEL SALEM

TRC4000 - TRC4001
Department of Electrical and Computer Systems Engineering
Monash University, Australia

-
oc
O
o
L
oc
—
<
<
T

Academic Supervisor: Dr. Wai Ho Li

. . Department of Electrical and
MONASH U n |Ve rSIty Computer Systems Engineering

{

Realtime Route Learning and Vehicle Tracking
Using Web-technologies on a Mobile Device

Fifine

m CORDOVA"

= :
+8:3-B —p

HTML5 CSss3 JavaScript

IQUEI‘ 14

mobile framework.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | i

Executive Summary

As the World Wide Web develops, the popularity of content-rich web and e-commerce
applications continues to grow. Modern software development frameworks enable the
native deployment of applications written primarily using web-technologies onto a range
of mobile operating systems. Furthermore, mobile devices have evolved as a computing
platform and now incorporate a range of new sensors. As a result of this advancement, we
are now able to investigate the use of web-technologies in areas of digital perception and
robotics. This project focuses on exploring data-mining and mathematical modelling
algorithms that aim to achieve realtime route learning and vehicle tracking using web-
technologies on a mobile device.

In order to ensure that sensor data is reliably acquired using web-technologies and to
facilitate the deployment of the application on multiple mobile devices, the Cordova (also
known as PhoneGap) framework was selected. The application, its encompassed
algorithms and documentation form the primary deliverable for this project. The user
interface developed does not use native elements and is instead designed to be platform
agnostic taking on the same form on all iOS and Android devices.

A modelling algorithm based on the root mean squared errors was derived to model
routes. Melbourne’s public transport network served as a testing ground for the project
since it is a well-known and clearly constrained system. An experiment on a Melbourne
railway line demonstrated the modelling algorithm’s reliability in capturing route data
measured on public transport. An experiment involving an unmanned aerial vehicle
demonstrated the modelling algorithm’s reliability in modelling unpredictable and quickly
changing routes. Future work may explore the possibilities of transmitting realtime model
data back to a central computer, which in turn can use the data to control and direct a
swarm of drones. Driving on road was a good demonstration of the application’s ability to
model and track everyday vehicle activity, such as that required for tracking taxi or
logistics fleets.

In an attempt to learn and track routes with obstructed GPS signals, a preliminary
investigation of inertial navigation using mobile devices was conducted. The objective was
to look into techniques for tracking trains while they went through the underground
portion of Melbourne’s City Loop. Overall, the assessment of the data in this experiment is
inconclusive in asserting if a mobile device will be sufficient in tracking a train with
obstructed GPS signals. Whilst this is an interesting area worth exploring, any further
analysis was regarded as outside the scope of this project and has been set aside for
future work.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | ii

Table of Contents

List Of ABBreviationscccceiiiiiiiriniiiiiiiiiniiiiinressssenresssssssnresssssssssssssssssssnns v
LiSt Of FIBUIES .. iiiiieeiiiiiiiiiieiiiiiiiriniiiniineeseissiinesssssssssnrensssssssstnenssssssssssssnssssssssssnnnsssss vi
[T Aoy B - o1 =T vii
List Of Code SNIPPELS...cciiiieeuiiiiiiiiiiiiiiiiiriiiiiiirreaisierreessssssstresssssssssiseessssssssssssnnnses vii
List Of FIOW Charts......cccoiiieueiiiiiiiinmniiiiiiininiiiniinieneiiiieesssimesssssimmessssssssssesssses vii
A 114 T Lot o o 1
A (o 1= oL T 4 TN 1
3 Requirements ANalySiS......ccicrrrriiiiiiirenniiiiiiiienneiiiiniiemsseiiinimiessssmeimessssssmsssssssssnns 1
3.1 Types Of StatemMENTS....ccciiiiiiiiiiiiiieiiiiirrsiie s reeernnssssssssssesnsssssssssssseessnssssssssssssssnnsnsss 1
3.2 Project Statements.....cccoiiieiiiiiiiiiir s e nanaas 1
I N 0 1=] o 1 4 o o U U URR 1
A A N1 U 4 o] o] 4 o] o TP PPPPPPRRPPPPPRE 2
A T 0= To [V 11 =T 0 =] L TP PPPUPPIRRPPPPRE 2
3.2.4 OptioNal rEQUIrEMENTS. . .uuiiiiie e e ettt e e e e e rre e e e e e e e e e e s bbb b reeeeaeaeeeeeeansssraaaaees 3
I T (ol [V 1] o Ly UUUR 3

T S VAV =Y o I =Tl ' T] [Y- =N 3
4.1 HTML5 and emerging web standardscccoiiiiiiimmniiiiiiiiineeeesses 4

LT B T 1= o T8 0 L= of 1o T3 N 5
LT R & - T YT TR 5
LT N |V o o 11 [= N e 1L ol YU UURR 5
5.1.2 DEVICE SENSOIS iiititiieiietiiuieeeeeettiutasseetettutaeseeettetaeeseettataseeeseessaseeesestssansssesessnneeeaens 5

LT B Y T 4T Y- T TR 5
5.2.1 Selected subset of web-technolOgIesccoeviiiiiiiiiiii e 5
N A A o U 1\ BT (o] - Y- = TP PPPUPPRRPPPPRE 5
5.2.3 ROULE ViSUAIISATIONuuiiiiiiiiiiee et e e e e e e e e e e e e e e e e e e e aasraraaaaeeas 6
5.2.4 Software tools, plugins and open-source libraries........ccccccceeeeieciiiiiieieee e, 6

LI o T 1 1V T = 6
6.1 Sensing 0N MODIle deVICEScuuuiiiiiiiiiiiiuuiiiiiiiiiieeiieerrreeenasssssssreesssssssssssssssssnnnnsss 6
6.2 IMIOTION SENSOIS ..cc.uuiiiieniiiiiieiiiiineiiireneitireasietrensssstrsasssstrassssstrsssssstesssssssenssssssenssssssannssss 7
[0 T Yol ot =1 {1 fo] 4 I=] =] (TS UUPR 7
oI A A GV o 1ol o o1 IO PPPPPPIRPPPPPRE 9

6.3 LOCAliSAtiON SENSOISuuiiiiiiiiiinnniiiiiiiitirennssisieeeiitessasssssssessssesssssssssssssssssssansssssssssssssnnns 12
(S0 70 A 00 4] o - 11U UPPPPRRRRPPRE 12
6.3.2 Global PoSition SyStemM (GPS).....cccccuiiiiiiiiiee ettt e e e st e e e e e e e e e et reeeeas 13

7 Software and Algorithms (Method).........ccccciiiiiiiiiiiiiiiiiiiiicieeeesseeeeenn 15
70 R © 1Y =T VL 15
7.2 The core application (VEracker.js)cciuiuuuiiiiiiiiiiininmniiiiiniiiinieniemseeenee 16
2% T o V=T o T U I o] = ot AU UUU 16
7.2.2 Route modelling (algorithm)ccc.uuiiiiiiiiee e e 17
7.2.3 Route modelling (MathematiCs)couiiiiiiiieie e 19
7.2.4 Route tracking (algorithm)coo e 23

Realtime route learning and vehicle tracking using web-technologies on a mobile device | iii

7.2.5 Route tracking (Mathematics).......cccoiiiiiiiiii i 25

7.3 Known liMitatioNns......ccieiiiiiiiiimmniiiiniiiiiiiiiienniieenssssssssssesiieesssmssssssesssssssssssssssssssssssans 28
7.3.1 Sharp corners (algorithmic) ... 28
7.3.2 Live map visualisation (PhYSICal)uuvieieeiiieie e 28

7.4 PhoneGap PIUGINSueuiiiiiiiiiimnniiiiiiiiiiiinnnsiiesiiitesssssssssssssstesssssssssssssssssssssssssssssssssssans 28
7.4.1 Plugin 1: SENSOISIMaNAEEr .ccccci i i eiiiitiieeee e e e ee e crrrr e e e e e e e e e e s e abtraeeeeeaaaeeseesanssssaeeeeens 29
7.4.2 PlUgin 2: QUICKSTOTAZE ..oeeiiviiiie ittt et e e st e e et e e s e sbte e e s e snbeee e e snbeeas 29

8 Experimental Results and DiSCUSSION.......ccceeuueiiiiiiiinneiiiiiiiiennesiiiiiienminieems. 29

8.1 Onatrain railway liNe.....ccuuueiiiiiiiiiiiiinicnnrrcr e s s s s s s s s e s s s nanssans 29

8.2 Inflight (using an aerial drone)ccceiiiiiiiiiiiiiiiiiiiiniir e s s ssssssasssans 30

8.3 DriVING ON r0ad ..cceuuuiiiiiiiiiiinniiiiieiiiietinnssiiieetieeemmnssssssssssseessssssssssssssssssssssssssssssssssnansssns 31

8.4 A preliminary attempt at inertial Navigationccccceviiiiiiiiiieiiiiiiniinieeeeeeeea. 32
8.4.1 Inertial Navigation SyStem (INS)uuiiiiiiiiiei e e e e e 32
8.4.2 Inertial navigation using an Apple iPhONecccviiiiiiiie i 32
8.4.3 Attempting inertial navigation tracking on a railway line.........cccoccceeeeiieiiiiiciiininennen. 32

L= R oY 4 ol 111 [o T 38
10 Acknowledgementscccccciiiiiiiuuiiiiiiiiinnniiiiiiineniiniiesssiiesnsiiiresnsssstrenns 39

10.1 Software libraries and PlUBINS........ciiiiiiiiiiiiniiiiiiiiiiireeeniirrresssseersreesssssssssssssens 39
10.1.1 PhoneGap - APACNE 2.0uuiiiiiiieeie ettt e e e e e e e e e e e ae e e e e e e e e e e an 39
O T A O LU=t oY A 1V PP 39
10.1.3 JQUErY MODile — MIT . e e e e e e e e e e e e e rareraeeaaaeeeean 39
O T S o' e |V PPN 39
10.1.5 NumericJavaSCript = IMIT oo e e e e e e e eebe e e s aeeeees 39
10.1.6 MoOdernizr — MIT & BSD ...ccciiiiiiiiiiiiiieeeeiiiteee sttt eessstte e e e ssarreeesssaaeeessnnsbaeeesnnnnaenesan 39
10.1.7 Google Maps — application must be free for users........ccccovveeeeeeieiiiiciciiiiieeeeeeee e, 40

10.2 Other tOOISccciiiiiiiienniiiiiiiiiiieeieentiierssssessesstttessssssssssssssnesssssssssssssssssssnnsssssssssans 40
(010 5 R o o To [<35 U PPUPRR 40
10.2.2 YUIDocs - Javascript Documentation TOO!ceeeiiiiiiiiiiiiiiiiiee e 40
0T T 1Y o) - [o F= 1] 1 U Lo LT 1o TS PPUPRR 40
OB S |V o U 1Y o o J PP PPPPPPPNN 40
T T €11 d o 1T B PRSP 40

T 3= =T =T o =N 41

Realtime route learning and vehicle tracking using web-technologies on a mobile device | iv

List of Abbreviations

ECSE — Electrical and Computer Systems Engineering
V-Tracker — Vehicle Tracker

WWW — World Wide Web

HTML — HyperText Markup Language

XML — Extensible Markup Language

CSS — Cascading Style Sheets

JS —JavaScript

PHP — PHP Hypertext Preprocessor

API — Application Programming Interface

GPS — Global Positioning System

MDS — Mobile Data Services

SMS — Short Messaging Service

VolP — Voice Over Internet Protocol

SaaS — Software as a Service

WebGL — Web Graphics Library

W3C - World Wide Web Consortium

OWP — Open Web Platform

DOM — Document Object Model

CPU — Central Processing Unit

Ul — User Interface

dof — degrees of freedom

MEMS — Micro Electro-Mechanical System

ASIC — Application Specific Integrated Circuit
AGPS — Assisted Global Positioning System

GSM — Global System for Mobile Communications
UTMS — Universal Mobile Telecommunications System
UAV — Unmanned Aerial Vehicle

INS — Inertial Navigation System

IMU — Inertial Measurement Unit

Realtime route learning and vehicle tracking using web-technologies on a mobile device

Vv

List of Figures

Figure 1: HTMLS tagline (left) and 1080 (Fight)......ccovviiiiiiiie e 4
Figure 2: Some key areas introduced in HTIMILScoiiiiiiiiiiieiiiiiieec e 4
Figure 3: Logo for Apache Cordova, the project behind PhoneGap [6]cccccevvuvvveeeerninnnen. 6

Figure 4: iPhone 4 main board with the STMicroelectronics LIS331DLH accelerometer and

the L3G4200D gyroscope side-by-Side [9]ccoiviiiiiiiiiiniiiieeee e 7
Figure 6: LIS331DLH XY accelerometer sensor detail [9]cccovvvieiieeieeeieeieee e, 8
Figure 7: L3G4200D GK10A three-axis gyroscope die [11] ...cccovvviveeeiiniiiieeeeeiniiieeeeesene 10
Figure 8: L3G4200D detail [11] .oooueeiiiiiieeeiiieeeeee ettt 11

Figure 9: The 3 dof gyroscope on the iPhone 4 provides roll, pitch and yaw angular
V2] Lo ol A =TI 1 K] [PPURPRUURR 12

Figure 10: The direction of an axis' positive angular change can be found using the Right

HanNd RUIE [10] oottt ree e e e e e e e e e e e e e e e s e e nnnnebaeaaeaeeeeaeaaaaanns 12
Figure 11: AK8973 Hall sensor [ayout [12]cccovviiiiiiiiiiiiiiiee i 12
Figure 12: iPhone 4 main board with the AKM AK8975 electronic compass [12] 13
Figure 13: The Broadcom BCM47501UB8 single-chip GPS receiver [15].....cccccovvuvieeeeinnnen. 14
Figure 15: “Start” is the application’s primary Pageccccueeeeeiriiiieeee it 15

Figure 16: "Debug" provides direct access to individual sensors, storage and notifications

APttt e bt e bt e e he e e bt e e ahe e e sate e e abeeeaneesaneeeane 15
Figure 17: "Info" provides license and general project information...........ccccoevviviieiiinnnee. 15
Figure 18: Plot demonstrating Ui and Ujcccccueeiiiiiiiiiiiiiiiiee e 21
Figure 19: Plot demonstrating Vi~ and Uj "ccceeiiiecieicceeee e, 22
Figure 20: Route visualisation on a satellite map showing 72% travelledcccccoun...e. 23
Figure 21: Route visualisation on a hybrid map showing 69% travelled..........c.cccccceeernnnneee. 23

Figure 22: A figure-eight route modelled using a 1m noise threshold and visualised on a
SATRIIIEE MAP ceiiiiiiee e e e e s s e e e st raeeeeenans 26

Figure 23: A figure-eight route modelled using a 2m noise threshold and visualised on a

Figure 25: Model visualised for the Glen Waverley railway line in Melbourne's southeast29

Realtime route learning and vehicle tracking using web-technologies on a mobile device | vi

Figure 26: Screenshot of the modelling process running in a computer web-browser

[(CTo Yo =4 [N ® oo T 1 4 1<) F RSP RPTRRRP 30
Figure 27: Raw geolocation measurements from a UAV routecccocceeeeviieeiniieeeniiieeennne 31
Figure 28: The UAV route's model at noise threshold radius of 0.5mcccccevviiiieeiinnnns 31

Figure 29: Visualised model for a route travelled by car (the model uses a noise threshold

= Yo [TV R o1 311 o) RSO PUPTRRR 31
Figure 30: Journey measurement intervals for the INS experiment........cccccceevviiviieeeennnnee, 33
Figure 31: Acceleration data (over 17mins) with filteringccoooeeiveiiiiieiecce e, 34
Figure 32: The sliding window offset superimposed on the acceleration data.................... 35
Figure 33: Normalised acceleration after filtering........ccceeeviiiiiiiiiiiniee e 35
Figure 34: Normalised acceleration and speed estimates........cccoccueeeviiieiniieeiniiee e 36
Figure 35: Comparison of distance estimates.........ccccevvviiiiiiiiinciiieee e 37

Figure 36: Residuals plot of the speed estimated using acceleration and that estimated

USTNE GPS e et e e et ettt ettt e b e s e e e e e e eeeeeeeeeeeeeneranes 38

List of Tables

Table 1: Common update intervals for acceleration events in iOS [10]ccccccvrrirrieeennnnn. 9

Table 2: The route object's properties and functions..........cccccovieeeieeieei e, 16

List of Code Snippets

Code snippet 1: Isolating the gravity component (low-pass filtering) [10].........ccccevveeeeennns 9

Code snippet 2: Isolating instantaneous motion (high-pass filtering) [10]c.ccoeeevveeeeennes 9

List of Flow Charts

Flow chart 1: Logic flow for "onLearningGeoMeasurement" function........ccccceccuvveeeernnnnee. 17
Flow chart 2: Logic flow for the modelling algorithmcooviiniiiiiiiii e, 18
Flow chart 3: Logic flow for the tracking algorithmccccooiiiniiiiiii e, 24

Realtime route learning and vehicle tracking using web-technologies on a mobile device | vii

1 Introduction

Modern software development frameworks enable the native deployment of applications
written primarily using web-technologies onto a range of mobile operating systems. As a
result, it is now possible to use smartphone web-browsers to directly access device
hardware, whilst providing realtime feedback through responsive user interfaces.
Research in the Department of Electrical and Computer Systems Engineering (ECSE) at
Monash University is exploring the boundaries of web-technology and pushing device
web-browser engines to the edge. As one of the first projects in this space, the V-Tracker
(or Vehicle Tracker) application is setting the foundations for future experiments that will
investigate the use of web-technologies in areas of digital perception and robotics.

2 Project Aim

By exploring data-mining and mathematical modelling algorithms, the V-Tracker project
aims to achieve realtime route learning and vehicle tracking using web-technologies on a
mobile device. Melbourne’s public transport network serves as a testing ground for the
project since it is a well-known and clearly constrained system.

3 Requirements Analysis
The purpose of this section is to identify the requirements for the V-Tracker project.

3.1 Types of statements
There are five different types of statements that are considered for this project:

i. Definitions: are listed in the form of "DEF.xx". These seek to clarify key terms used
throughout the project.

ii. Assumptions: are listed in the form of "AS.xx". These are statements made to
facilitate the achievement of the requirements.

iii. Requirements: are listed in the form of "R.xx". These refer to the essential
requirements necessary to fulfil the project expectations and therefore must be
achieved.

iv. Optional Requirements: are listed in the form of "OR.xx". These refer to additional
requirements that would be nice to have, but are not essential.

v. Exclusions: are listed in the form of "EX.xx". These refer to requirements that will
not be developed or considered for this project.

3.2 Project statements

3.2.1 Definitions
* DEF.01: “Realtime” implies that data is processed within milliseconds of it being
collected.
* DEF.02: A “Vehicle” is defined as any machine used for transporting people or
goods on land or by air (this excludes maritime travel).

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 1

3.23

DEF.03: “Route learning” implies creating and updating (in realtime) a
mathematical model that represents a vehicle’s route as travelled from an
initialised origin.
DEF.04: “Tracking” implies spatial and temporal identification of a vehicle’s
location on an existing modelled route.
DEF.05: “Web-technologies” refers to any and all technologies associated with the
World Wide Web (WWW). This includes, but is not restricted to, code written using
markup and scripting languages such as HTML, XML, CSS, JS, PHP.
DEF.06: “Web interfaces” refers to Application Programming Interfaces (API) that
can be accessed using web-technologies.
DEF.07: A “mobile device” is defined as an electronic computing device that can:

o connect to a cellular network, and

o be easily relocated or transported.
DEF.08: “Melbourne’s Public Transport Network” includes all train services
operated by Metro Trains Melbourne, all tram services operated by Yarra Trams
and some metropolitan bus services.
DEF.09: Melbourne’s “City Loop” is defined to include the following train stations:
Flinders Street, Southern Cross, Melbourne Central, Flagstaff and Parliament.

Assumptions

AS.01: There are no hard deadlines for processing data in realtime.

AS.02: The project will use an Apple iPhone 4 as a mobile device.

AS.03: The mobile device can be fixed to the vehicle such that any translation or
rotation of the device is restricted once the vehicle is initialised at the route’s
origin.

AS.04: The device’s Global Positioning System (GPS) signal is never severely
disrupted or degraded whilst on the route.

Requirements

R.01: the project outcome must include a mobile software application (the
“application”).

R.02: the application must be developed in a form that allows it to be natively
deployed on different mobile operating systems, namely: iOS 5.0+ and Android
4.0+.

R.03: the application’s core libraries must be written using web-technologies.

R.04: the application must use web interfaces to collect geolocation data using the
Global Positioning System (GPS) receiver found on the mobile device.

R.05: the application must use web interfaces to collect data that indicates
magnetic north using the compass sensor found on the mobile device.

R.06: the application must use web interfaces to collect acceleration data using the
accelerometer sensor found on the mobile device.

R.07: the application must use web interfaces to infer device orientation using the
gyroscope sensor in combination with the accelerometer and compass sensors
found on the mobile device.

R.08: the application must use web-technologies for data storage.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 2

* R.09: a user must be able to export collected data for further analysis in
mathematical packages such as MATLAB™, Octave or Mathematica™.

* R.10: the application must use web interfaces to generate user notifications.

* R.11: the application must use web-technologies for realtime data analysis and
interpretation.

* R.12: the application must learn a route by creating and updating (in realtime) a
mathematical model that represents the vehicle’s route as travelled from an
initialised origin.

* R.13: The application must use web-technologies to generate a visual
representation of a modelled route on the mobile device.

* R.14: the application must be capable of learning a railway route and tracking a
service on that route - provided the rail segment is outside the City Loop.

3.2.4 Optional requirements
* OR.01: the application may learn tram routes.
* OR.02: the application may learn some metropolitan bus routes.
* OR.03: the application may track train services whilst within the City Loop.

3.2.5 Exclusions
* EX.01: the application will not consider user-experience.
* EX.02: the application will not seek user consent for any action.
* EX.03:in order to avoid premature optimisation during software development, the
code will not be optimised unless absolutely necessary.

4 Web Technologies

As the World Wide Web develops, the popularity of content-rich web and e-commerce
applications continues to grow. Morgan Stanley Research estimates 1.8 billion users
connected via the Internet in 2009 [1] and growth in usage remains robust across the
globe [2]. Furthermore, computing technologies continue to evolve with high-speed
broadband and wider spread 3G networks now penetrating many developing nations [2].
The increased deployment of high-speed mobile networks is also encouraging Internet use
on mobile devices in particular [1]. It is expected that “more than one third of European
mobile subscribers will be using mobile Internet services by the end of 2013” [3].
Moreover, the report from Morgan Stanley’s research division suggests that the number
of mobile Internet users is actually expected to surpass that of desktop users in 2014 [1].
Researchers have defined mobile Internet use in the form of Mobile Data Services (MDS)
as “all non-voice services afforded through mobile networks, except for interpersonal SMS
exchanges, that the end users can employ whilst mobile” [3]. While improvements in
mobile networks remain key to the success of mobile Internet, there are many other
influencing factors that continue to drive the uptake of mobile use, primarily: the Global
Position System (GPS), improved motion sensing, communication technologies such as
Voice Over Internet Protocol (VolP), growth in Software as a Service (SaaS) platforms and
the global expansion of social media [2].

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 3

P’ve seen the

FUTURE

It’s in my

BROWSER

Figure 1: HTMLS5 tagline (left) and logo (right)

4.1 HTML5 and emerging web standards

Until recently, the development and effective deployment of complex, fully interactive
web-applications has been hampered by a variety of obstacles [4]. Emerging standards,
particularly those pertaining to HTML5 and WebGL are removing many limitations and
providing developers with the platforms to transform the web [4]. Through the consensus
and support of the broader international community, the World Wide Web Consortium
(W3C) provides standards that define an Open Web Platform (OWP) for application
development [5]. Of the many forthcoming standards, the HTML5 standard is commonly
highlighted as a major step forward. The new standard complements the existing HTML
standards by adding new features aimed at narrowing the distinguishing factors between
web and desktop applications [4]. Some of these new features include: Offline
Applications, Local Storage, Canvas API, Built-In Audio and Video Support, Asynchronous
Script Loading, Drag-and-Drop Support, Context Menus and Cross-Document Messaging
[4,5]. Further to the evolution in HTML and CSS standards, there have been significant
developments to client-side JavaScript API, particularly those relating to geolocation,
XMLHttpRequest and the Document Object Model (DOM) [5].

AJ L0

Semantics CSS3 Multimedia Graphics & 3D
Device Access Performance Offline & Storage Connectivity

Figure 2: Some key areas introduced in HTML5

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 4

5 Design Decisions

The purpose of this section is to identify some of the major design decisions that have
been made for the V-Tracker project. Design decisions are broken down into Software and
Hardware decisions as outlined below.

5.1 Hardware

It is a project requirement that the software be developed in a form that allows it to be
deployed on multiple mobile operating systems, namely: iOS 5.0+ and Android 4.0+. As a
result, there can be no strict hardware requirements for this project. In future
development, the project may incorporate additional hardware accessories that provide
higher accuracy motion sensing and/or user-interfacing hardware that can enhance the
user experience.

5.1.1 Mobile devices

An Apple iPhone 4 has been selected as a mobile device for use in prototype
development. An Asus Nexus 7 and an HTC Desire have also been used to demonstrate
the software's versatility across different devices.

5.1.2 Device sensors

It was decided that the application would attempt to collect and store information from
the device's motion sensors (accelerometer and gyroscope) and localisation sensors
(compass and GPS).

5.2 Software

5.2.1 Selected subset of web-technologies

It was decided that the application would be executed entirely inside the web-browser for
this stage of the research. This implies that all necessary computation was to be
performed locally using the web-browser's JavaScript engine. Furthermore, all data was to
be stored locally using web-interfaces made available in HTML5. The primary benefit of
this decision was the application's ability to run independent of a server and more
importantly, without the need for persistent Internet or network connectivity. The
obvious constraint presented here is the limited realtime computational power available
to the web-browser's DOM. It is anticipated that future projects will explore the benefits
of distributed computing and possibly offload the computation and storage to a dedicated
server.

5.2.2 HTMLS storage

HTML5 standards propose two primary forms of data storage: local key/value storage
(localstorage/sessionstorage) and local database storage (SQLite3) [5]. According to the
W3C, the SQLite3 standards are no longer being maintained and as a result local key/value
storage was chosen as the primary form of data storage for V-Tracker. Nonetheless, in
order to satisfy the requirement relating to easy data export for further data analysis, the
SQLite web-interfaces were used to enable users to create a SQLite3 database file that
could be downloaded from the device. The database can provide comma-separated tables
that can be imported into mathematical packages.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 5

5.2.3 Route visualisation

Google serve an open API for accessing their maps platform. Given its power and well-
established developer community, Google Maps was selected for satellite and map-based
route visualisation. Access to and use of the Google Maps API is free providing the final
application is also free for users.

5.2.4 Software tools, plugins and open-source libraries

The project outcome includes a mobile software application (V-Tracker). The application,
its encompassed algorithms and documentation form the primary deliverable for this
project. Many crucial decisions were made with regard to the tools, plugins and open-
source libraries used in V-Tracker. Each of those was chosen on the merit of their unique
functionality. More information, in addition to well-deserved credit, is given for all the
tools, plugins and open-source libraries used in V-Tracker in following sections.

The most noteworthy framework used in this project is: PhoneGap. In order to ensure that
sensor data was reliably acquired using web-technologies and to facilitate the deployment
of the application on multiple mobile devices, the Cordova (also known as PhoneGap)
framework was selected. According to the PhoneGap website:

“PhoneGap is an HTML5 app
platform that allows you to author

APACHE native applications with web

CO R D OVA"" technologies and get access to APIs

and app stores. PhoneGap

leverages web technologies

u developers already know best...

HTML and JavaScript.” [6]
Figure 3: Logo for Apache Cordova, the project behind PhoneGap [6]

6 Hardware
The purpose of this section is to discuss and explain the hardware used in the V-Tracker
project.

6.1 Sensing on mobile devices

When it comes to building embedded systems, mobile devices and smartphones offer a
range of advantages that primarily include: ARM CPU, power supply, battery
management, WiFi support, cellular and mobile data support, rich user-interfaces (Ul) and
much more [7]. Furthermore, “mobile phones have matured as a computing platform and
[have] acquired richer functionality, these advancements often have been paired with the
introduction of new sensors” [8]. For example, a standard Apple iPhone 4 has eight
different sensors: accelerometer, GPS, ambient light, dual microphones, proximity sensor,
dual cameras, compass and gyroscope [8].

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 6

6.2 Motion sensors
V-Tracker uses web-technologies to access the mobile device's motion sensors. Using the
Apple iPhone 4 as an example, this section will explain the basics behind these sensors.

-1 3G4200D

i - -] e
E 8 ol et

Eu D aso D 2

Figure 4: iPhone 4 main board with the STMicroelectronics LIS331DLH accelerometer and the L3G4200D gyroscope
side-by-side [9]

6.2.1 Accelerometer
A piezoelectric accelerometer can be visualised as a mass suspended using springs.
Variations in the physical properties of the springs are detected as the sensor's
encompassing body moves. By monitoring the variations in the spring's physical
Y properties, we are able to assert the body's proper-
acceleration. In mobile devices, accelerometers are
often used to sense the device's overall motion. The
accelerometer in the iPhone 4 is a small three degrees-
of-freedom (3 dof) STMicroelectronics LIS331DLH
three-axis micro electro-mechanical system (MEMS)
accelerometer, shown in Figure 4 above. The sensor’s
three degrees-of-freedom allow it to provide
acceleration data on all three axes as shown in Figure
5. This sensor can be simply described as two
cantilever beams that form capacitive plates, with a
proof mass attached to the end of one of the beams
Figure 5: The 3 dof accelerometer on the [9]. Moving the device as a whole moves the cantilever
iPhone 4 provides acceleration readings on plates closer or further apart. The change in
the x, y and z axes [10] capacitance between the plates creates a signal that is

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 7

measured using an on board Application Specific Integrated Circuit (ASIC) [9]. The ASIC is
also used to maintain the spacing between the plates (i.e. the capacitance) by using
capacitive feedback to maintain a constant DC bias across the plates [9].

/sensor
/ . / y : ‘.‘

4 gapagitof #
plates

proof mass

/ptgoimass /3

S R AN N : '

Acc.V Spot Magn Det WD —— 20 um

10.10kV 3.0 650x SE 128 ST Micro LIS331DLH CW TB

Figure 6: LIS331DLH XY accelerometer sensor detail [9]

6.2.1.1 Choosing an appropriate update interval

Selecting an interval that minimises the number of calls to the sensor will improve the
device's battery life. It is therefore recommended that the update interval be
appropriately set for the intended use case. Table 1 below is extracted directly from the
Event Handling Guide for iOS and describes some of the more common update intervals
chosen for acceleration events. Naturally, these intervals can be interpolated or
extrapolated for unique uses. These intervals can also be specified for applications
deployed on different mobile operating systems, provided of course that the device’s
sensor can respond at the frequencies specified.

Acceleration data is typically returned in the form of a three-dimensional vector with x-

axis, y-axis and z-axis components. The acceleration data returned in iOS includes a gravity
component, which can be isolated or filtered to suit specific applications.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 8

Event Usage

frequency (Hz)

10-20 Suitable for use in determining the vector representing the current
orientation of the device.

30-60 Suitable for games and other applications that use the accelerometers
for real-time user input.

70-100 Suitable for applications that need to detect high-frequency motion.
For example, you might use this interval to detect the user hitting the
device or shaking it very quickly.

Table 1: Common update intervals for acceleration events in iOS [10]

6.2.1.2 Isolating the gravity component (low-pass filtering)

If you are using the accelerometer sensor to detect a device's orientation for example, it is
suitable to filter out shakes and spikes from the acceleration data. In other words, in order
to better detect a device's orientation, we only want the gravity component of each axis
on the sensor. To do this we need to isolate the gravity component from the rest of the
accelerometer data. The iOS Dev Center recommends a basic low-pass filter to reduce the
effects of sudden jolts, shakes, or movements [10]. The filter can be implemented as
follows:

// Use a basic low-pass filter to keep only the gravity component of each axis.

accelX = (acceleration.x * kFilteringFactor) + (accelX * (1.0 - kFilteringFactor));
accelY = (acceleration.y * kFilteringFactor) + (accelY * (1.0 - kFilteringFactor));
accelZ = (acceleration.z * kFilteringFactor) + (accelZ * (1.0 - kFilteringFactor));

// Use accelX, accelY, accelZ to do stuff..

Code snippet 1: Isolating the gravity component (low-pass filtering) [10]

The kFilteringFactor can be used to specify the sensitivity of the filter. A low-value filtering
factor of 0.15 (or 15%) was found to be suitable for most applications in V-Tracker.

6.2.1.3 Isolating instantaneous motion (high-pass filtering)

If you are using the accelerometer to detect sudden movements such as shakes, it is
recommended that a high-pass filter be used to reduce the effects of gravity [10]. The
filter can be implemented using a technique similar to that in low-pass filtering.

// Subtract the low-pass value from the current value to get a simplified high-pass filter
accelX = acceleration.x - ((acceleration.x * kFilteringFactor) + (accelX * (1.0 - kFilteringFactor)));
accelY = acceleration.y - ((acceleration.y * kFilteringFactor) + (accelY * (1.0 - kFilteringFactor)));
accelZ = acceleration.z - ((acceleration.z * kFilteringFactor) + (accelZ * (1.0 - kFilteringFactor)));

// Use accelX, accelY, accelZ to do stuff..

Code snippet 2: Isolating instantaneous motion (high-pass filtering) [10]

6.2.2 Gyroscope
Unlike the accelerometer and compass, which rely on external forces, a gyroscope
measures its own rotation. To do this, gyroscopes rely on the Coriolis effect or the

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 9

perceived deflection of a moving object when observed from a rotating frame of
reference. The iPhone 4 is equipped with a MEMS three degrees-of-freedom
STMicroelectronics L3G4200D gyroscope that uses the Coriolis effect [11].

nsa!l &
(i
roll -
proof

; capacitor'
plates

1D/2D) |

TINENIZHHSH wat

(heeaRed
el = e

2003

Figure 7: L3G4200D GK10A three-axis gyroscope die [11]

The figure above shows the die for the GK10A three-axis gyroscope. The drive capacitor
plates seen on the figure are used to vibrate four proof mass elements. The vibration of
the proof mass elements is managed via a spring that can be better seen in the figure
below. As the device is rotated, differential out-of-plane deflection can be sensed by poly-
silicon capacitor plates located beneath the proof mass elements [11].

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 10

..”.“.”.”.”.”.”.“.”.”.“.H.“.“................
O00O000000OONOCARRANAN
OO00000O0OO00CCARRAI

GOO0OO0O0000COOAMMAATY
OO00COOOOO0000CAARATINN
OONUOO000CO0000000AMRANNN
OO
OORAX AN

LOOOONONO00 W)
............”.”...........”.”.”.“.“.“.“... 3y
AAAAADOOOOO0OO0O0ONO00
QUOCEARBEEENARARRKXNNNAN
BOOOOOCO0000
DOOO00O0000
)
OO0

OOOOOO0000C
DOODOOO0000
OO0 R
POOOOOO000O000000000NNY
OOCOO000000OO00000AAAY
POOOCOOOO0000OOO000AAA
BOOOOOOO000OON000AAAN
BOOOOOCOOO0000OOOCAAAN
BOOOCOOO0OO0OOO0COAAAN
DOOOOOOOOOOOOOOOCAAANT
BOOOOOOOOOOOOCAAARX)
BOOOCOOOOOOOOOORAARXX)
SOOOOOOOOOOARARI)
AR OOOLCAARNAXN)

44

BOOO0
dﬁvuvv
BOOO000
ROOO00S
DOOOO
OO0 ...”.”.".
000
DOOOOOOOR)

0
00
.... 0 ..”.”...
00
DOLOOOONN)
........................ AN
DOVOO00G
DOVOOO0NG
OO

’ 4
ooo.o

5
...............2.......

ALY
......................“.“.u.”.“.”.”..o
OO000000 Y

CROO000 00NN

Q00000 00
QOOOO0OOOOOAMARA
OAARERRXIOMNS DOSAAARRARKX
Q000000000 ADO00000
0 AR

UOOOO000000
QOOOOOOO00BOAAARAAAK
COO000000) WNOONN
QUOOOOO0ANAAN) .u.“......

DUOUO

..............

OOARARK)
LOCO0O00 OOOOOY
O00O00NNS

UUOUOO
Iffd{ﬁ???VVVV%%%%%
WAL
ooooooo UOUU ...oooou.”.“o”o“o”o.
UUOUOU0
oo.o oo .. o. .o ooooo.“o”o oo”o”ooo‘ oo“'”oo
ooooooooooo.oo%%o

GUOUOOOO0000000

) oooo.o.oo.oooo.oooo~

0
OONOOOB0
00000

.......,.... OO

DOOO0000ONN
VOOOOONNY

UUOOOO0000000
¢
oooo.oooooo.ooooo UOU0

| Spot Mag'n

00 kV 3

150x SE 15

0]
L3G4200D detail [11]

10

8

igure

F

ing the gyroscope

on us

2.1 Asserting device orientati
Gyroscopes in mobile devices only sense angular velocity or "the rate at wh

2

6

ice

ich a dev

ing

(

ion us
iques to combine data from

ientati

ICe orien

[10]. In order to assert the dev
is necessary to rely on the accelerometer and compass

rotates around each of its spatial axes

the gyroscope,

or

iltering techn

ies of f

Ise a ser

magnetometer) sensors and ut

The accelerometer and compass (or magnetometer) are also used to

all three sensors

freedom gyroscope on the
ike the accelerometer, the

of-

L

The three degrees

ift
ity on all

regularly compensate for gyroscope dr

three axes
ight-hand coordinate system shown in

ides angular veloc

Phone 4 prov
gyroscope uses the r

the
ised

/4
isual

. As a result

igure 9 below

F

isv

, which

ight hand rule

ing the r

ined us

ion can be determ

positive angle of rotat

10.

igure

F

in

11

Realtime route learning and vehicle tracking using web-technologies on a mobile device

-y
Figure 9: The 3 dof gyroscope on the iPhone 4 provides Figure 10: The direction of an axis' positive angular
roll, pitch and yaw angular velocities [10] change can be found using the Right Hand Rule [10]

6.3 Localisation sensors

V-Tracker also uses web-technologies to access the mobile device's localisation sensors.
Again using iOS and the Apple iPhone 4 as a guide, this section will explain the basics
behind these sensors.

6.3.1 Compass

In mobile devices, the compass (or magnetometer) is used to assert Magnetic North. The
iPhone 4 has an AKM AK8975/3 magnetic sensor that uses the Hall effect to sense its
orientation relative to the earth's magnetic field [12]. A current is passed between the two
contacts on the Hall sensors and the perpendicular effects of the Earth’s magnetic field
are captured and processed [12]. As a result of the technique used for the magnetometer,
it is common for the sensor to suffer from environmental interference and therefore
requires regular calibration.

Figure 11: AK8973 Hall sensor layout [12]

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 12

The compass in the iPhone 4 is a three-axis sensor that can provide heading data
regardless of the device's orientation in space. When combined with the accelerometer
and gyroscope, these three sensors provide sensing information on nine degrees-of-
freedom. The iPhone’s magnetometer can be seen on the circuit board in the Figure
below.

= TIRRRARNAAGER — 2R

PAY T g mee, 0ith B

: “fe] !

)y

no ——
%0 £ , B

T o

)

}' ;
1
! :{ﬁ“i[li‘i_‘}:".; ‘

Figure 12: iPhone 4 main board with the AKM AK8975 electronic compass [12]

6.3.2 Global Position System (GPS)

Global Positioning System (GPS) receivers have become a common feature of modern
mobile devices and form an integral part of V-Tracker. GPS and location services provide
geographical context and allow developers to build location aware applications such as
maps-supported navigation [13]. The Global Positioning System itself was setup by the
U.S. Department of Defence in the 1970s and today consists of a constellation of 24 active
satellites and 5 reserves [14]. Although originally intended for military use, the GPS is now
available for civilian use with no subscription or setup fees [14]. Each GPS satellite travels
on a precise orbit and its Ephemeris data (data that indicates where a satellite is
throughout the day) is programmed into GPS receivers [14]. In order to find a user’s
location, a GPS receiver transmits a signal to its nearest satellites and measures the time
taken for the transmitted signal to be returned from each satellite. The time differences
can then be used to calculate the distance to each of the satellites pinged [14].
Fundamentally, GPS receivers are able to combine Ephemeris data and signal transmission
time measurements with simple trilateration techniques to reliably assert a user’s location
to an accuracy radius of approximately 10m. A minimum of three satellites is required to
determine a user’s location with reasonable accuracy.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 13

Several factors that contribute to errors in GPS signals do so by degrading the signal and
affecting its accuracy [14]. Some of these factors include: ionosphere and troposphere
delays, signal multipath, receiver clock errors, orbital errors, number of satellites visible,
satellite geometry/shading and intentional degradation of the satellite signal [14].

Figure 13: The Broadcom BCM4750IUB8 single-chip GPS receiver [15]

The iPhone 4 has a Broadcom BCM47501UB8 single-chip GPS receiver [15], which can be
seen in the figure above. The BCM4750 is a single-chip, single-die, low power Assisted-GPS
(AGPS) solution that is optimised for mobile devices [16]. The receiver supports update

Figure 14: The iPhone 4's integrated UMTS, GSM, GPS, Wi-Fi
and Bluetooth antennas on the stainless steel inner frame [15]

rates of up to 2Hz [16]. Assisted-
GPS chips are able to utilise
alternative radios such as WiFi
and GSM to improve the time-to-
first-fix on GPS based positioning
systems.

On the iPhone 4, Apple has
integrated the UMTS, GSM, GPS,
Wi-Fi and Bluetooth antennas into
the stainless-steel inner frame
[15]. This is shown the figure 14.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 14

7 Software and Algorithms (Method)

The application, its encompassed algorithms and documentation form the primary
deliverable for this project. This section will offer an overview of the computational logic
behind some of the fundamental algorithms that drive V-Tracker. For a more detailed
explanation of the software, please refer to the code documentation in the project wiki at
http://www.github.com/hadimichael/V-Tracker.

7.1 Overview

The application uses a single HTML markup for all its pages. JS scripts and CSS classes
provided in the jQuery and jQuery mobile frameworks provide the essentials for handling
navigation and user interface (Ul). The application’s Ul is broken down into three pages,
screenshots of which are shown in the figures below. The Ul does not use native elements
and is instead designed to be platform agnostic — it takes on the same interface form on
all i0S and Android devices. It is also designed to automatically scale with variations in
screen size.

Vehicle Tracker Vehicle Tracker Vehicle Tracker
Debug Debug
What would you like to do? Data Collection LICENSE (Apache 2.0)
Copyright (C) 2012 Hadi Michael
+ Learn a new route Init €@ Collect €) Stop
Licensed under the Apache License,
o Track me on a route Sensors Access Costan 200 e lse et Jol sy
not use this file except in compliance
with the License. You may obtain a
(:::] Manage routes @ Geolocation copy of the License at:
http:/apache.ora/licenses/LICENSE-
(3%) Edit settings © Compass 2.0.
© Accelerometer Unless required by applicable law or
agreed to in writing, software distributed
@ Gyroscope under the License is distributed on an
"AS IS" BASIS, WITHOUT
Storage API WARRANTIES OR CONDITIONS OF

ANY KIND, either express or implied.

Qan tha liranca far tha cnanifin

AFigure 15: “Start” is the application’s o Figure 16: "Debug" provides direct ‘ >Figure 17: "Info" provides license and
primary page access to individual sensors, storage general project information
and notifications API

With the help of third party libraries, five principal JS scripts handle the application’s key
functionality:

1. vtracker.js — contains the application’s core functionality. It controls the Ul for the

“Start” page and delegates all application tasks.

2. debug.js — provides testing and debugging access for the scripts used across the
application. It also controls the Ul for the “Debug” page.
sensorsAPI.js —is an extension wrapper for PhoneGap’s device sensors API.
storageAPl.js — is an extension wrapper for PhoneGap’s storage API.
5. notificationsAPl.js — is an extension wrapper for user notifications.

b w

The code is well commented and explained in detail in the online documentation. Only key
algorithms and the mathematics associated are explained herein.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 15

7.2 The core application (vtracker.js)
The core application is handled in vtracker.js. This section will focus on the “route” object
and the modelling and tracking algorithms that can be implemented for a route.

7.2.1 The “route” object

Every travel route in V-Tracker, which can be learnt, modelled and then used for tracking,
is declared as a “route” object. By examining the route’s properties and functions, we can
easily establish a basic understanding of the characteristics that define a route.

ename eloadFromStored(storedRoute)

egeoData eonlLearningGeoMeasurement(measurement)
emodel eonTrackingGeoMeasurement(measurement)
enoiseThreshold eonGeoMeasurementError(error)
eminAccuracy erecreateModel(callback)

elearnCounter egetModelLength(from, to)

etimeoutLimit egetRouteLength(from, to)
etrackingThreshold eshowModelOnPlot(divid)

eshowModelOnMap(divid, mapType)
ereplayModel(interval)
ereplayRoute(rate)
estopReplay()

elearn()
estoplLearning()
estartTracking()
eresetTracking()
estopTracking()

esave()
eexportRouteToDB()
eexportModelToDB()

Table 2: The route object's properties and functions

The route object’s properties are described as follows:

* name —is the route’s name.

* geoData — is all the route’s raw geolocation measurement data that has been
captured during learning sessions. This data is ordered in chronological order and
order matters. Each geolocation measurement consists of a: timestamp, latitude,
longitude, altitude, accuracy, altitudeAccuracy, heading, speed.

* model —is the mathematical model generated for the route expressed using model
control points. The model array consists of longitude and latitude control points,
and an index indicating the extent of the raw geolocation data that is captured by
the model. The model property contains: lon, lat, index.

We use an index point, instead of matching the last model control point to the raw
data, in order to avoid errors that can arise if the route has segments that overlap.

* noiseThreshold — is the threshold radius (in metres) that is used in the model to
differentiate between what is considered to be noise fluctuation in measurements
and what is considered to be an actual change in trajectory (default value = 2).

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 16

* minAccuracy — is the minimum GPS accuracy (in metres) that is considered to be
sufficient for learning (default value = 50).

* JearnCounter — is a counter that keeps track of how many times a route has been
learnt.

* timeoutLimit — is the limit at which we decide that the accuracy of the data being
measured is not going to improve and that we should take some action (default
value = 10).

* trackingThreshold — is the threshold distance (in metres) used in tracking to decide
if the user is still on the route or has deviated (default value = 50).

While the functions can be considered to be self-explanatory, some of the key algorithms
are worth exploring in further detail. These are the functions particularly relating to the
mathematical modelling and tracking of vehicles on a route.

7.2.2 Route modelling (algorithm)

Route modelling takes place within milliseconds of data being collected or in other words,
it takes place in realtime. When a user asks the application to learn a new route, the route
object calls the geolocation API to start tracking GPS signals and registers an on-success
callback function called “onLearningGeoMeasurement”. The logic flow for the callback
function is illustrated in the flow chart below:

Receive a new geolocation
measurement

Is the accuracy
sufficient?

Timeout ++

Notify the user

Push the measurement onto the
geolocation data stack

Update the model to account for
the new measurement

Flow chart 1: Logic flow for "onLearningGeoMeasurement" function

Every time a new geolocation measurement is received, a quick check asserts that the
measurement’s accuracy is sufficient for learning. This precaution is taken to reduce the
impact of drastically noisy data. If the data accuracy is considered to be insufficient, a
timeout counter is incremented and the user is notified. Alternatively, if the data accuracy
is sufficient, the measurement is pushed onto the geolocation data stack and the route is

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 17

passed to the modelling function for processing. The logic flow for the modelling function
is presented in the flow chart below:

Receive a route object

Data validation

T Notify the user

Yes

Initialise return array (output)

Load any existing model data into
the return array

Find the index of the last data
point in the raw geolocation data
that is captured by the model

Find the next model control point
Push the geolocation data at the

control point’s index onto the
return array (output)

Is the control
point at end-
of-data?

Yes

Push the final geolocation data
point onto the return array
(output)

Return an array (output) as the
route’s complete and
updated model

Flow chart 2: Logic flow for the modelling algorithm

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 18

Upon receiving a new geolocation measurement, a short test is conducted to ensure that
the data structure of the geolocation stack is suitable for modelling. Once the test is
passed, an output array is initialised and any existing model data is loaded into it to avoid
processing data points that have already been modelled. At this stage a series of
mathematical formulations calculate the model control points and the route’s model
object array is updated and returned to the route object.

7.2.3 Route modelling (mathematics)

We must undertake a series of mathematical transformations to find the model’s control
points. We start with a matrix of raw geolocation measurements that includes every
measurement taken on the route thus far:

Do 4o
01 A
measurements = @, A,
On An

Where:

Po..n is latitude in degrees
Ao..n is longitude in degrees

The Haversine formula dictates that the spherical distance (d) between two points
(B, Ay) and (@, Ap) on a sphere is:

- A, — A
d=2rsin-!| [sin2 <w> + cos(¢,) cos(¢py) sin? <%>
Where:

r is the radius of the sphere

Now we use the Haversine formula to transform the latitude and longitude measurements
into two-dimensional Cartesian coordinates using (@, 4,) as the point of origin. We do
this by finding:

- Ai— A
Vi€Zyx; = 2rsin~!| [sin? <w> + cos(¢,) cos(¢,) sin? <lTO>

A — A
= 2rsin~!| [cos2(¢,) sin? <lTO>

and

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 19

;| — Ao— A
Vi€Zy:y, = 2rsin | |[sin? <w> + cos(¢;) cos(¢,) sin? <%>

= 2rsin~!| [sin? <@>

Where the mean radius of the earth is specified as:
r = 6371000 (metres)

We now have:
Xo Yo
X1 N
transformed data = X2 Y2

Xn Yn

This is a matrix that we can use to start identifying the model’s control points. To do this,
we begin by including the first data point in measurements (i.e. the point of origin) as
the first model control point:

model = [0y o]

Subsequently we determine the next model control point. In particular, we are interested
in finding the next point in the transformed matrix (point i in transformed data), where
the root-mean-square-errors (RMSE) of the straight line fit between (x,, y,) and (x;, ¥;)
equates to, or exceeds, the predefined “noise threshold”. We do this by incrementally
testing each point (Vi € Z,,) in transformed data, starting at (xq,y1), until RMSE
reaches the “noise threshold”.

In physical terms, the “noise threshold” represents the radius (in metres) of the boundary
line that is used to determine whether the fluctuation in the intermediary points (i.e. the
residuals) can be ignored as noise or not. A typical “noise threshold” radius of 2 metres
was found to be suitable for most routes.

The errors necessary for this modelling approach are calculated as the shortest
perpendicular distance between the modelled line and the point of interest. To find this
distance, we begin by first defining two vectors. The first v, defines the straight line
between the origin and the current point in the transformed data at which we want to
test the RMSEs. The secondF]is the straight line between the origin and the current
intermediary point of interest for which we want to find the residual error value.

=[] e =[]

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 20

y (x_i,y_i)

(x_Jwy_J)

error_j v i

v

(*x_0y.0)

Figure 18: Plot demonstrating v, and v,

The next step is to calculate the counter-clockwise rotation angle of v, using the atan2
variation of arctangent:

a; = atan2(y;, x;)

a; in this case describes the rotation angle of the current modelled line around the z-axis.

—_

We can now use this angle to rotate the second vector, v;, around the z-axis such that v,
aligns with the x-axis. To do this we apply a rotation around the z-axis of negative a using

the rotation matrix R,(—a;).

v, = R,(—a;) 7}
Where: .
R-a) = [G0C0) costeas
Therefore:

2] =[G o] [

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 21

(x_j'yJ)

v
error_j

+ + + + + >&
(x_0,y_0) v_i' Oc_i'y_i")

Figure 19: Plot demonstrating IT,’ and UT’

We are only interested in the vertical component (the yj’ component) of this rotation.
Therefore we can find the error as:

y]f = error; = X; sin(—a;) + Yj cos(—a;)

Finally, the next model control point (pointi) in the transformed matrix, can be found
using the following approach:

Vi€ Z,: RMSE; =

3-;11[xj sin(— atan2(y;, x;)) + y; cos(— atan2(y;, x;))]?

(-1

Where the conditional test at every increment of i is: RMSE; < noise threshold.

As soon as the condition is violated, let us assume that this occurs at iterationi = k, we

stop testing and add the k' point of the measurements matrix onto the model matrix,
such that it now looks like:

Dy A

model = [0 0]

D Ak

In other words, we use k as an index pointer to indicate the specific point in

measurements that should be included as a model control point. Throughout the whole
modelling process, we use an integer-incremented counter variable called the

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 22

model index to indicate the extent of the raw geolocation data that has been captured
by our model. At this stage:

model index = k

The general process is repeated until we reach the end of the measurements matrix and
have found all the model control points necessary such that: i = n — 1. At this stage, we
can push on the nt"* point of the measurement matrix onto the model matrix and are
left with a complete model:

Do Ao
model = Q):k /1:"
On Ay

When a new geolocation measurement is captured, we pop off (or remove) the last
control point in the model and repeat the process as above. However this time, to avoid
processing data that has already been captured by the model, we start modelling from

(xmodel index» Ymodel index) as the pOint of Origin-

7.2.4 Route tracking (algorithm)
Route tracking takes place in realtime whilst the user is on the route. The user’s location
information is also visualised in realtime, as shown in the figures below:

Tracking { Done. Tracking ¥, Done
Live feedback: Live feedback:
Travelled: 248m (72%) from start point Travelled: 7016m (69%) from start point

Figurbe 20: Route visualisation on a satellite‘ map Figulre 21: Route visualisation on a hybrid h'nap
showing 72% travelled showing 69% travelled

Vehicle tracking makes the fundamental assumption that the device running V-Tracker is
on board the vehicle. When a user asks the application to start tracking them on an
already learnt route, the route object begins by interpolating the model data to create a
more ‘detailed model’. After that, the route object calls the geolocation API to start
tracking GPS signals and registers an on-success callback function called

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 23

“onTrackingGeoMeasurement”. The logic flow for the tracking algorithm is presented in
the flow chart below:

Start tracking

Interpolate the route’s model to Receive a new geolocation
create a more ‘detailed model’ measurement

Is the accuracy

Timeout ++
sufficient?

Notify the user

Do we know
what segment
the useris on?

Set the localisation search

Yes
parameters to: all segments

Set the localisation search
parameters to:
current segment £ 1 only

Localise the user

Visualise the location on a map

Calculate the user’s distance to
the route in metres

Is the user within
an acceptable Notify the user
distance?

Forget what segment the user is
on, such that the following time
we search all segments.

Flow chart 3: Logic flow for the tracking algorithm

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 24

7.2.5 Route tracking (mathematics)
We must conduct a series of mathematical calculations to localise a user on a route. We
start with the model matrix containing all of the model’s control points:

Do 4o
01 M
model = |0, A,

D An
Where:

¢Po..n is latitude in degrees
Ao..n is longitude in degrees

A vector that joins two consecutive model control points on a route is defined as a
segment. An example of a segment would be the straight-line model that connects control
points (@4, 1,) to (@,, 4,). Each segment consists of m number of sub-segments. In order
to accurately track a user, we use the route’s existing model to generate a
detailed model, which consists of the same segments as well as additional sub-segments.
We do this by creating a new matrix with linearly spaced vectors between the control
points:

[Doo Ao]
Go1 Ao

(Z)O,Z AO,Z

detailed model = |Dom Aom

®1,0 /11,0
®1,1 /11,1
-(Z)n m An,m-

)

Further calculations only take place upon receipt of a new geolocation measurement.
When we receive a new geolocation measurement indicating the user’s location at time ¢,
provided that the accuracy is sufficient, we set up a user’s location; matrix:

user's location, = [0, A¢]

The next step is to specify the localisation search parameters using the
current segment index. The localisation search parameters are the parameters that will
tell the application where to search when localising the user. Throughout the tracking
process we use a variable called the current segment index as a buffer to remember
the segment that we think the user is currently located on. Using this variable we can use
a Markov chain to assert that a user can only move onto the next or previous segment.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 25

Previous Segment (csi-1) <- Current Segment (csi) -> Next Segment (csi+1)

Using a Markov chain allows us to overcome localisation confusion that may occur on
routes that have independent segments that are very close or intersecting.

7
GOQSIQ .". 55 ez & Fur L.'E&:‘ Report a map error |§ X
Figure 22: A figure-eight route modelled using a 1m noise Figure 23: A figure-eight route modelled using a 2m noise
threshold and visualised on a satellite map threshold and visualised on a plot

By observing the figure-eight route shown above, it is noticeable that the 3" and 7"
segments intersect. By making the Markov chain assumption, we can assert that if a user
is currently located on the 3" segment (current segment index = 3) then it is expected
that they would move onto the 4t (current segment index +1) or 2"
(current segment index — 1) segments only, and not the VAN comparable scenario
would exist if the user were located on the 7% segment; they would be expected to move
onto the 6" or 8" segments only.

If we already know which segment a user is on and have a value for the
current segment index, then we define the search parameters to include:

search — current segment index + 1 segment
If we do not know which segment a user is on and the current segment index is null or
undefined, then we specify the search parameters to include all segments. This search
case is common when we are initialising the segment index for the first time:
search — all segments
The Euclidean distance between two points, p and g, is defined as the length of the

straight-line segment that connects them (pq). If we have two points with the Cartesian
coordinates p: (px,py) and q:(qx,q,) in a two-dimensional Euclidean plane, the

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 26

Euclidean distance d between those points can be found using a formula equivalent to the
Pythagorean theorem:

d(p.q) = d(q,p) = \/(m —)% + (0 — 4y)?

Since we are only interested in the relative distance between the points, we assume that
the geolocation measurements exist on a two-dimensional Euclidean plane. This
assumption allows us to perform calculations using the detailed model without having to
transform it into Cartesian space.

We use the specified search parameters to extract a search matrix as a subset of the
detailed model. In cases where the search parameter includes all segments, the search
matrix is identical to the detailed model. In alternative cases, we end up with a search
matrix as follows:

[Q)csi—l,o Acsi—l,o i
Q)csi—l,l Acsi—l,l

(Z)csi— 1m Acsi— 1,m

Q)csi,o Acsi,o
Q.. .
search, = | ~ U1 esul
chi,m Acsi,m

Q)csi+1,0 Acsi+1,0

Q)csi+1,1 Acsi+1,1

-(Z)csi+ 1m Acsi+ 1,m-

Where:
csi is the current segment index
Once we have a matrix that defines where a user is expected to be, we find the point in

that matrix that is nearest to the user using the Euclidean distance approach and then clip
the user to that point on the route.

Y csi € search parameters: d; = \/((Z)Csi —0:)% + (Aesi — Ap)?

Once the shortest distance is determined, the Haversine formula is used to calculate the
user’s distance to the route in metres. This distance calculation is then compared to a
threshold distance to test whether the user has significantly deviated from the route. If
the user’s distance exceeds the predefined threshold, a notification is issued to alert the
user and the current segment index is reset to null signifying that we are no longer
certain of the user’s location on the route.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 27

Finally, again using the Haversine formula the application estimates a distance value and
percentage of travel on the route. This is then visualised on the device in realtime, along
with a map visualisation as shown in the screenshots earlier.

7.3 Known limitations

As with most computational analysis there are limitations that must be accounted for
when specifying parameters and using an application. Two key limitations of V-Tracker are
discussed in this section, one algorithmic and one physical.

7.3.1 Sharp corners (algorithmic)

The first known limitation is the modelling algorithm’s approach to handling sharp
corners. Sharp corners are defined as corners with angles equal to or greater than 90°. The
limitation can be observed in Figures 23 and 24. Another example of a route with sharp
corners would be one that contains a U-turn (or a 180° corner). In order to adjust for this
limitation, it is recommended that a smaller (less than 2 metres) noise threshold radius be
specified for routes that contain several sharp corners.

7.3.2 Live map visualisation (physical)

Tracki ~- L
— gl Due to the nature of tracking, it is typical that the user

Live feedback: be ‘on the move’ during the process. Despite
continuous improvements in mobile networks and
cellular infrastructure, users may still face intermittent
network connectivity and disrupted data services as
their devices switch between different cellular towers.

Travelled: 8627m (85%) from start point

As a result of disrupted MDS, live map visualisation may
be inconsistent and map tiles may not load in time. The
effect of this limitation is shown in the screenshot in
Figure 27.

Using offline maps or preloading the map content for a
specific route can help mediate this limitation in the
future.

I&igure 24: Screenshot showing the effects
of disruptive MDS whilst tracking on a
train route

7.4 PhoneGap Plugins

PhoneGap provides basic access to native functionality, however in order to achieve
realtime route learning and vehicle tracking using web-technologies it was necessary to
expand the available functionality. It is acknowledged that some of this additional
functionality may be of use to other engineers and as a result, two free open-source
PhoneGap plugins have been developed and released online for the developer community
to use in alternative applications. The plugins were released for free under a completely
open source MIT license.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 28

7.4.1 Plugin 1: SensorsManager

A JS sensors manager based on sensorsAPIljs has been released as a plugin for PhoneGap.
The sensors manager expands on existing PhoneGap API and provides access to some of
the more advanced device-sensors functionality that was developed for this project.

7.4.2 Plugin 2: QuickStorage

A JS storage script based on storageAPl.js has been released as a plugin for PhoneGap. The
QuickStorage plugin uses existing PhoneGap API to provide easier access to some of the
more common SQLite3 and localstorage functions.

8 Experimental Results and Discussion

Several experiments were conducted to demonstrate V-Tracker’s versatile use. The results
and observations from some of the key experiments are shown and discussed in this
section. The blue circle visible on the figures in this section is the indicator used in vehicle
tracking to indicate a user’s location on the route. In post-processing, the same blue
indicator is used to replay the route or model.

8.1 On a train railway line

Ve o
\ °‘$:

\

Google 51 T A ‘ ™ v

|

Report a map error @ X

Figure 25: Model visualised for the Glen Waverley railway line in Melbourne's southeast

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 29

The figure above is the result of modelling a route captured whilst travelling on the Glen
Waverley railway line in Melbourne’s southeast. The Glen Waverley line was chosen for its
unique wavy and irregular shape. This experiment demonstrates the modelling algorithm’s
reliability in capturing route data measured on a railway line.

=] L > n
5 0 g p
-37.820 & = @ L] @ (O g | u [
| Elements Resources Network Sources Timeline Profiles Audits Console

It took: 6ms to model: 1075 data points, with a noise threshold of 2m.
The model uses: 69 data points only. index.html:112
[144.9892949, 144.9892389, 144.9904481, 144.9912855, 144.991868, 144.9932712,
144.9939237, 144.9952094, 144.9971331, 144.9993387, 145.0043813, 145.0079063,
-37.830 145.0079052, 145.0098137, 145.0107907, 145.0121586, 145.0136917, 145.0172848,
145.0180737, 145.0188173, 145.019149, 145.0200402, 145.0204878, 145.0211184,
145.021689, 145.0221703, 145.0223968, 145.0225216, 145.0232123, 145.0237646,
145.024311, 145.0247639, 145.0255152, 145.0260153, 145.026688, 145.0274684,
145.0284649, 145.0331681, 145.0345579, 145.0358201, 145.0369811, 145.0374643,
145.039987, 145.0404538, 145.0411073, 145.0428486, 145.0437797, 145.0510053,
145.0524647, 145.0529763, 145.0542045, 145.0547319, 145.0551628, 145.0569889,
-37.840 145.0583261, 145.0588008, 145.059357, 145.0608545, 145.0612739, 145.0621132,
145.0635877, 145.0644257, 145.0651357, 145.0655261, 145.0661878, 145.0667103,

145.0677595, 145.0685153, 145.0690942]

index.html:114

[-37.8237061, -37.82369083, -37.82396186, -37.82428909, -37.82461584,

-37.82570494, -37.82601148, -37.82624424, -37.82641363, -37.82662942,

-37.82723884, -37.82749361, -37.82753553, -37.82774269, -37.82784345,

- -37.82778455, -37.82762876, -37.8277536, -37.82790617, -37.82820014,

-37.850 -37.82839978, -37.82930322, -37.83001624, -37.83166015, -37.83323753,

-37.83404489, -37.8342958, -37.83448208, -37.83511059, -37.83548206,

-37.83600641, -37.83660481, -37.83778899, -37.83831129, -37.83870031,

-37.83904629, -37.83929082, -37.83974894, -37.84018796, -37.84085873,

-37.84185467, -37.84247364, -37.84742258, -37.84808055, -37.84881104,

-37.85010601, -37.85059016, -37.85301967, -37.8535289, -37.85368383,

-37.85436273, -37.85479774, -37.85532678, -37.8577346, -37.85928658,

-37.860 -37.86006159, -37.86136078, -37.86628309, -37.86703183, -37.86801204,
-37.86967963, -37.87005325, -37.87258023, -37.87360275, -37.87473566,
-37.87532152, -37.87607715, -37.87648179, -37.87680356]

N index.html:115

-37.870

-37.880 |
144.99 145.00 145.01 145.02 145.03 145.04 145.05 145.06

Figure 26: Screenshot of the modelling process running in a computer web-browser (Google Chrome)

The screenshot above shows a plot of the route’s model as produced in post-processing.
The console window provides feedback for the modelling process. As shown, when
running in a computer web-browser (Google Chrome), the process took 6ms to model
1075 data points with a noise threshold radius of 2m. This was found to be sufficient for
most railway applications. The final model consists of only 69 model control points. The
console window shows the final control points selected for the model; these are shown in
blue in the figure above.

8.2 In flight (using an aerial drone)

Some experiments were conducted with the mobile device attached to the frame of an
unmanned aerial vehicle (UAV). The raw geolocation route measurements and the model
generated from the experiment are both shown in the figures below. The modelling
algorithm is designed to handle two-dimensional travel only (latitude and longitude).
Consequently the model does not account for the UAV’s altitude changes, though altitude
data is available in GPS measurements and may be considered in future work.

The key observation from this experiment is the UAV’s travel path. As is noticeable in the
visualisation of the raw geolocation measurements, the drone takes on an irregular path
that consists of several sharp corners. It is important to recall at this point that sharp
corners can be a limitation to the model if not dealt with appropriately. As a result, it is
necessary to tune the modelling algorithm’s parameters to be sensitive to small and
sudden movements. Furthermore, throughout flight the drone sways constantly as it
stabilises for the effects of wind and its own motion. Hence it is necessary that the noise
threshold radius be sufficiently wide to accurately distinguish between a change in

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 30

trajectory and a mere sway, whilst sensitive enough to still accurately capture sudden
sharp movements. It was found that a noise threshold radius of 0.5m provided an
appropriate balance for UAV drone routes.

'J < Ezax[ce‘uq@_s.n';\aurgn Merz u& gg,_ s0f Usa Report a
Figure 28: The UAV route's model at noise threshold
route radius of 0.5m

This experiment demonstrates the modelling algorithm’s reliability in modelling
unpredictable routes as commonly travelled by UAVs. Future work may explore the
possibilities of transmitting realtime model data back to a central computer, which in turn
can use the data to control and direct a swarm of drones.

8.3 Driving on road

Driving on road is a good demonstration of the application’s ability to model and track
everyday vehicle activity, such as that required for tracking taxi or logistics fleets. This
experiment can also be used to demonstrate the application’s reliability in modelling bus
and tram routes. The figure below shows a visualisation of a model generated for a route
travelled by car.

East

Higt > LAnaeniung i ~
Mount o) Valley Parklands South

’=m yiageray O She;merdg‘n o
N) Waverley L |

Chadstone ™ _ g

22 > . : =
T Waverley

. \\ Municipal “
Oakleigh Oaklei \ Golf Course ||

i

[15) Clayton Notting Hl g 4 Carbbean Waterford Valley
. ; arm
ropolitan‘y=Huntingdale North _ thﬁ:ers |‘\‘ Gardens = Golf Course
3off Club - - N i I
claee) L N !
S| /<'/1'l’(" @ “Map data ©2012 Google, Whereis(R), Sensis Pty Ltd - TermufWie Report a map error | X
WMioiara

Figure 29: Visualised model for a route travelled by car (the model uses a noise threshold radius of 3m)

Despite the constant sharp corners, routes travelled by car tend to be regularly
interrupted by road intersections and traffic lights. As a result, a noise threshold of 3m

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 31

proved sufficient for modelling typical inner city and suburban roads. A noise threshold
radius of 3m also enables the model to filter out minor lateral changes in trajectory such
as lane changes. The model shown in the figure above uses only 38 model control points
to capture 1469 geolocation measurements taken over approximately 25 minutes.

8.4 A preliminary attempt at inertial navigation

In an attempt to learn and track routes with obstructed GPS signals, a preliminary
investigation of inertial navigation using mobile devices was conducted during the early
stages of the project. The objective was to look into techniques for tracking trains while
they went through the underground portion of Melbourne’s City Loop.

8.4.1 Inertial Navigation System (INS)
Inertial navigation systems (INS) provide a means of positioning a user with only minimal
need for external infrastructure [17]. By recording a user’s initial position and then
monitoring the orientation and speed as interpreted from inertial sensors, it is possible to
position a user within reasonable accuracy [17]. Normally, an INS will consist of:

* an entity outfitted with at least six inertial sensors: three acceleration sensors (x, y,

z) and three rotation sensors (roll, pitch, yaw),

* an Inertial Measurement Unit (IMU) that measures the sensors’ data, and

* analgorithm that can process the data and calculate the entity’s position [17].
To calculate the entity’s current position, the algorithm uses a technique called dead
reckoning. A dead reckoning algorithm relies on knowledge of the initial position, as well
as that of the individual movements made from the initialising point [17].

8.4.2 Inertial navigation using an Apple iPhone

Typical modern mobile devices, such as iPhone 4, ship equipped with the sensors required
for INS. Researchers at the University of Munich have analysed the sensors on the iPhone
3GS and the iPhone 4 in an attempt to use the devices for indoor INS [17]. Despite the use
of filters, it was concluded that the high inaccuracies and error associated with the mobile
devices’ sensors made it too challenging to build a precise INS [17]. They are currently
exploring potential enhancements by using a multi-dimensional Kalman filter [17].

Engineers at the GNSS Research Center at Wuhan University have attempted to use an
iPhone 4’s inertial sensors for enhancing car navigation [18]. They concluded that it was
possible to use the MEMS sensors on the iPhone 4 for car navigation purposes [18].
However, their research was focused on enhancing GPS positioning by using the inertial
sensors to account for travel during short periods of GPS disruption [18]. A drift of 30m
was observed after loosing the GPS signal for 30 seconds [18].

8.4.3 Attempting inertial navigation tracking on a railway line

An experiment was set up to test the possibility of using INS to track trains while they
went through the underground portion of Melbourne’s City Loop. To do this, an iPhone 4
was attached to a seat on a train journey and acceleration data was captured with the
plan that it would be analysed after the journey.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 32

The journey used herein was one that took place on the Glen Waverley line, starting at
Richmond station and heading down-rail towards Glen Waverley. The journey lasted for
approximately 17 minutes and acceleration measurements along the direction of travel
were captured at regular intervals. The journey took place outside the City Loop in order
to allow for the measurement of GPS data that could later be used to cross-reference the
acceleration-based calculations. The journey’s measurement intervals are shown in the
map visualisation below.

(5.2412 a7
_', _-4724§,14,70

3.0 776,
778’ 5861
775865 J880

V8827 883
:88485‘3—:@85
* 89‘21897'
904 912 *
. S P975
e T 981@,'236984?'»
985 "‘;’98‘3
229987 1003 ¢
101571025
1022 1023
%1024

nvigh(Mejr‘zz&‘F,ugro ; RLI%S : 4 o (;0()8[C garth

¥ o i o At Y) L]
37°50'41.05"™'S '145°01'48.48" E elev, 45'm Eye alt . 7.97 km

Figure 30: Journey measurement intervals for the INS experiment

The figure shown on the following page illustrates the raw acceleration measurements
that were captured on the journey. Since the device’s physical orientation was directly
aligned with the direction of travel, no sensor fusion was required to translate the
available acceleration measurements onto the direction of travel.

A low pass filter with a filtering factor of 0.15 (15%) was applied to the raw acceleration
data to smooth out some high frequency noise. The technique used for low-pass filtering
is the same one recommended earlier and is based on a moving-average low-pass filter
with a depth of one. A wider Gaussian filter was trialled, however a simple low pass filter
was found to provide a generally better smoothing function.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 33

Acceleration data (over 17 mins) with filtering

90T
Lc0T
800T
686

[433
€76
68

! 958
! LE8
I g18
66L
08L

‘z 1oL

~ |t
—

Y 589
; 999
i Ly9
829

—Low pass filter applied (15%)
Time (s)

Raw acceleration data

K—"oz
T
o

|
n
Q

0.2
0.15
0.1

-0.05
-0.1
-0.15
-0.2

o

(8) uonesajaddy

Figure 31: Acceleration data (over 17mins) with filtering

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 34

It is noticeable in the previous figure that the acceleration measurements suffer from low
frequency offset. In order to adjust for this, a positive sliding window offset of size 80 was

found to be most suitable. The low frequency offset is plotted in the figure below.

Sliding window offset to be removed from filtered acceleration data

Raw acceleration data —Low pass filter applied (15%) —Sliding window offset (size 80)

0.2

0.15

0.1 —

o
1)
&

|

Acceleration (g)
(=]

=4
=}
G

-0.1

-0.15

0.2
Time (s)

Figure 32: The sliding window offset superimposed on the acceleration data

After subtracting the sliding window offset and adjusting for the effects of gravity, the

acceleration data can be normalised and integrated to produce the graphs below.

Normalised acceleration (over 17 mins)

12

0.8

— ﬂ

145

163

181

217

235

271

289

307

325

343

361

379

415

451
A

523

559

-0.2

o v V

-0.8

1.2
Time (s)

Figure 33: Normalised acceleration after filtering

Realtime route learning and vehicle tracking using web-technologies on a mobile device

35

(s) swinyL

UOLBII[DII. W) PAIRWLSD PAAAS PISI|EWION e UOLlEI3[IIIE PISI[BWION

spaads pue uonesa|aIde pasijewloN

pa3ds Sd5 PaSI|EWION

00000000°T-

00000008°0-

00000009°0-

0000000%°0-

0000000¢°0-

000000000

0000000¢°0

0000000%°0

00000009°0

000000080

00000000°T

0000000C°T

Figure 34: Normalised acceleration and speed estimates

36

Realtime route learning and vehicle tracking using web-technologies on a mobile device

Figure 34 (above) illustrates the outcome of applying a trapezoidal integration on the
filtered acceleration data. It also shows the speed measured using the GPS receiver. The
signals have been normalised to enable easier comparison. It can be observed that after
applying two-stage filtering, the acceleration data produces a reasonable estimate of
speed. Although far from ideal, this finding nevertheless indicates that this may be an area
worth exploring further in the future.

Once speed was estimated from acceleration, it was again integrated using trapezoidal
integration to generate an estimate for distance.

Distance estimates (over 17 mins)

=—Distance estimated from acceleration Ground truth distance —Distance estimated from GPS speed
12000
10000
8000
_
£
=
g
£ 6000
]
it
k]
(=]
4000
2000
0
SO ~NOUINETMANTONORNMNLOINNT O ANATODXIRNLOLNTETMNMAN—TONNDONONT NN dTONNONOWMNTMHAN OO 0NN O
NMOO N MINNODEA NS OO0 ANTONO TMWNOODETMUN OO NS OO NTOONNTTMUNNEDTMWNNW0O NS
Time (s)

Figure 35: Comparison of distance estimates

The figure above shows the distance estimated from acceleration, as well as the ground
truth distance, which is calculated using the Haversine formula. Although exhibiting minor
drift, the distance estimated from GPS speed shows the adequacy of the integration
technique used in estimating distance.

As shown in the figure, the acceleration’s estimate of distance suffers from significant
drift. Nonetheless, the data appears to show potential in being sufficiently accurate for
estimating a train’s location within the City Loop - especially if combined with train
timetable data.

The residuals plotted in the figure below shows the extent of drift in the speed estimated
from acceleration. Furthermore, a cyclic trend can be observed in the residuals indicating
that the data may suffer from heteroskedasticity. An average error of approximately 313m
was calculated.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 37

Residuals between estimated and ground truth distances

700

600

500

Distance (m)
B
o
o

w
o
=]

200

100

Time (s)

Figure 36: Residuals plot of the speed estimated using acceleration and that estimated using GPS

Overall, the assessment of the data in this experiment is inconclusive in asserting if a
mobile device INS will be sufficient in tracking a train as it travels through Melbourne’s
City Loop. Whilst this is an interesting area worth exploring, any further analysis was
regarded as outside the scope of this project and has been set aside for future work.

9 Conclusion

It is expected that “more than one third of European mobile subscribers will be using
mobile Internet services by the end of 2013” [3]. Furthermore, emerging standards
particularly those pertaining to HTML5 and WebGL are removing many limitations and
providing developers with the platforms to transform the web [4]. By exploring data-
mining and mathematical modelling algorithms, the V-Tracker (Vehicle Tracker) project
has successfully achieved realtime route learning and vehicle tracking using web-
technologies on a mobile device. As one of the first projects in this space, the application
is setting the foundations for future experiments that will investigate the use of web-
technologies in areas of digital perception and robotics.

The application, its encompassed algorithms and documentation form the primary
deliverable for this project. It is acknowledged that some of the functionality developed
may be of use to other engineers and as a result, two free open-source PhoneGap plugins
have been developed and released online for the developer community to use in
alternative applications. The plugins were released for free under a completely open
source MIT license.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 38

10 Acknowledgements

Several tools, plugins and open-source libraries were used to make V-Tracker possible.
Gratitude is extended to each and every developer that contributed to these projects.

10.1 Software libraries and plugins

10.1.1 PhoneGap - Apache 2.0

“PhoneGap is an HTML5 app platform that allows you to author native applications with

web technologies and get access to APIs and app stores. PhoneGap leverages web

technologies developers already know best... HTML and JavaScript.”
http://www.phonegap.com

10.1.1.1 PhoneGap LocalNotifications Plugin for iOS — MIT

The LocalNotifications plugin is used to generate and issue push-style notifications locally

on ios.
http://github.com/phonegap/phonegap-plugins/tree/master/iOS/LocalNotifications

10.1.2 jQuery — MIT
“jQuery is a fast and concise JavaScript Library that simplifies HTML document traversing,
event handling, animating, and Ajax interactions for rapid web development. jQuery is
designed to change the way that you write JavaScript.”

http:// jquery.com

10.1.3 jQuery mobile - MIT
“A unified, HTML5-based user interface system for all popular mobile device platforms,
built on the rock-solid jQuery and jQuery Ul foundation. Its lightweight code is built with
progressive enhancement, and has a flexible, easily themeable design.”

http:// jguerymobile.com

10.1.4 flot— MIT
“flot is a pure JavaScript plotting library for jQuery, with a focus on simple usage,
attractive looks and interactive features.”

http://code.google.com/p/flot/

10.1.5 Numeric JavaScript - MIT
“Numeric Javascript is a javascript library for doing numerical analysis in the browser.
Because Numeric Javascript uses only the javascript programming language, it works in
many browsers and does not require powerful servers.”

http://www.numericjs.com

10.1.6 Modernizr — MIT & BSD
“Modernizr is a JavaScript library that detects HTML5 and CSS3 features in the user’s
browser.”

http://modernizr.com

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 39

10.1.7 Google Maps — application must be free for users
“Google Maps has a wide array of APIs that let you embed the robust functionality and
everyday usefulness of Google Maps into your own website and applications, and overlay
your own data on top of them.”

http://maps.google.com

10.2 Other tools

10.2.1 node.js
“Node.js is a platform built on Chrome's JavaScript runtime for easily building fast,
scalable network applications. Node.js uses an event-driven, non-blocking I/O model that
makes it lightweight and efficient, perfect for data-intensive real-time applications that
run across distributed devices.”

http://nodejs.org

10.2.2 YUIDocs - Javascript Documentation Tool

“YUIDoc is a Node.js application that generates APl documentation from comments in

source, using a syntax similar to tools like Javadoc and Doxygen.”
http://yui.github.com/yuidoc/

10.2.3 AptanaStudio3
“Aptana Studio harnesses the flexibility of Eclipse and focuses it into a powerful web
development engine.”

http://aptana.com/

10.2.4 Mou App
“Mou is the missing Markdown editor for web developers.”
http://mouapp.com/

10.2.5 GitHub
“GitHub is the best place to share code with friends, co-workers, classmates, and
complete strangers.”

http://github.com/

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 40

11 References

[1] Mary Meeker, Scott Devitt, and Liang Wu, "Internet Trends," Morgan Stanley,
Presentation 2010.

[2] Akamai, "The State of the Internet (1st Quarter 2012)," 2012.

[3] Dimitrios C Karaiskos, Panos Kourourthanassis, Panagiota Lantzouni, George M Giaglis,
and Christos K Georgiadis, "Understanding the Adoption of Mobile Data Services:

Differences among Mobile Portal and Mobile Internet Users," in ICMB 2009. Eighth

International Conference on Mobile Business, 2009, pp. 12-17.

[4] Antero Taivalsaari and Tommi Mikkonen, "The Web as an Application Platform: The
Saga Continues," in 37th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), 2011, pp. 170-174.

[5] World Wide Web Consortium. W3C. [Online]. http://www.w3.org/standards/

[6] Apache. (2012, August) Apache Cordova. [Online].

http://incubator.apache.org/cordova/

[7] Daniel Brateris et al., "iOS hardware as a sensor platform: DMM case study," in Sensors

Applications Symposium (SAS), 2011 IEEE, 2011, pp. 308-311.

[8] Nicholas D Lane et al., "A Survey of Mobile Phone Sensing," Communications Magazine,

IEEE, vol. 48, no. 9, pp. 140-150, September 2010.

[9] Sinjin Dixon-Warren. (2012, September) MEMS Journal. [Online].

http://www.memsjournal.com/2010/12/motion-sensing-in-the-iphone-4-mems-

accelerometer.html

[10] Apple Inc. (2012, April) iOS Developer Library. [Online].

http://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/Eve

ntHandlingiPhoneOS/MotionEvents/MotionEvents.html#//apple ref/doc/uid/TP40009

541-CH4-SW1

[11] Sinjin Dixon-Warren. (2012, September) MEMS Journal. [Online].

http://www.memsjournal.com/2011/01/motion-sensing-in-the-iphone-4-mems-

gyroscope.html

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 41

[12] Sinjin Dixon-Warren. (2012, September) Mems Journal. [Online].

http://www.memsjournal.com/2011/02/motion-sensing-in-the-iphone-4-electronic-

compass.html
[13] Apple Inc. (2012, August) i0S Developer Library. [Online].
http://developer.apple.com/library/ios/#DOCUMENTATION/UserExperience/Conceptu

al/LocationAwarenessPG/Introduction/Introduction.html

[14] Garmin Ltd. (2012, September) Garmin. [Online]. http://www8.garmin.com/aboutGPS/

[15] iFixit. (2012, April) iFixit. [Online]. http://www.ifixit.com/Teardown/iPhone-4-

Teardown/3130/3

[16] Broadcom Corporation. (2012, September) Broadcom GPS Silicon Solutions. [Online].
http://www.broadcom.com/products/GPS/GPS-Silicon-Solutions/BCM4750

[17] Corina Kim Schindhelm, Florian Gschwandtner, and Michael Banholzer, "Usability of
Apple iPhones for Inertial Navigation Systems," in 22nd International Symposium on

Personal, Indoor and Mobile Radio Communications, 2011 IEEE, 2011, pp. 1254-1258.

[18] Xiaoji Niu, Quan Zhang, You Li, Yahao Cheng, and Chuang Shi, "Using inertial sensors of
iPhone 4 for car navigation," in Position Location and Navigation Symposium (PLANS),

2012 IEEE/ION, 2012, pp. 555-561.

Realtime route learning and vehicle tracking using web-technologies on a mobile device | 42

