-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathWSSR_PGD_cos.m
175 lines (130 loc) · 4.25 KB
/
WSSR_PGD_cos.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
% This function solves the Weighted Sparse Simplex Representation (WSSR)
% problem through Projected Gradient Descent (PGD). We first solves the
% subproblem of WSSR analytically to obtain \beta_0, then we project
% \beta_0 to the probability simplex to obtain \beta_1. We use \beta_1 as
% the initial solution vector to the PGD algorithm.
% Last edited: 15 Apr. 2020
function [W, obj_star, obj_mat] = WSSR_PGD_cos(X, k, rho, normalize, ss, MaxIter, stretch, thr)
%%% Inputs:
% X: the N by P data matrix.
% k: the number of nearest neighbours.
% rho: the penalty parameter on the l1 norm of the WSSR objective.
% normalize: 1 or 0, whether we normalize the data to unit length or not.
% ss: initial step size -- we use backtracking line search.
% MaxIter: the maximum number of iterations to run PGD.
% stretch: whether to stretch the data points or not.
%%% Outputs:
% W: the N by N coefficient matrix.
% obj_stars: a vector of length N whosen entries contain the objective
% function values for each point.
% obj_mat: an N by MaxIter matrix that stores the objective function values over all
% iterations for all points.
if nargin < 4
normalize = 1;
end
if normalize == 1
X0 = X;
X = norml2(X0, 1);
end
if nargin < 5
num = 1;
end
if nargin < 6
MaxIter = 100;
end
if nargin < 7
stretch = 1;
end
if nargin < 8
thr = 1e-4;
end
N = size(X, 1);
W = zeros(N);
obj_mat = zeros(N ,MaxIter);
obj_star = zeros(N, 1);
epsilon = 1e-4;
beta = 0.8;
alpha = 0.3;
%%
for i = 1:N
%% We remove any zero cosine similarities
idx = 1:N;
idx(i) = [];
Xopt = X(idx,:)';
yopt = X(i,:)';
% calculate the cosine similarities
sims = abs(yopt'*Xopt);
if sum(sims <= 1e-4) ~= 0
ind = find(sims >= 1e-4);
sims = sims(ind);
idx = idx(ind);
end
%% sort the similarity values in descending order
[vals, inds]= sort(abs(sims), 'descend'); % absolute cosine similarity values
if k == 0 % consider only the positive similarity values
dk = vals(vals > epsilon);
nn = inds(vals > epsilon);
k = length(dk);
else
if k > length(inds)
dk = vals;
nn = inds;
k = length(inds);
else
dk = vals(1:k);
nn = inds(1:k);
end
end
D = diag(1./dk);
Y = X(idx(nn),:)';
%% stretch the data points that will be considered in the program
if stretch == 1
Xst = Y;
Ts = 1./(yopt'*Xst);
Xst = Xst*diag(Ts);
Y = Xst;
end
%% solve a system of linear equations for the subproblem
a = Y'*Y + epsilon.*D'*D;
b = ones(k, 1);
A = [a, b; b', 0];
B = [Y'*yopt-rho*D*b; 1];
beta_le = linsolve(A,B); % solve the system of linear equations
beta_cur = beta_le(1:k); % \beta_0
beta_cur = SimplexProj(beta_cur);
%% Projected Gradient Descent (PGD)
betas = [];
iter = 1;
while iter <= MaxIter
% calculate the gradient
g = -Y'*yopt + Y'*Y*beta_cur + rho.*diag(D) + epsilon.*D'*D*beta_cur;
% gradient update step
beta1 = beta_cur - ss.*g;
left = ObjVal(yopt, Y, beta1, D, rho);
right = ObjVal(yopt, Y, beta_cur, D, rho) - alpha*ss*norm(g).^2;
% backtracking line search
while left > right
ss = beta*ss;
beta1 = beta_cur - ss.*g;
left = ObjVal(yopt, Y, beta1, D, rho);
right = ObjVal(yopt, Y, beta_cur, D, rho) - 0.5*ss*norm(g).^2;
end
% gradient update step (using updated step size)
beta1 = beta_cur - ss.*g;
% project \beta onto the probability simplex
beta_cur = SimplexProj(beta1);
betas(iter,:) = beta_cur;
% calculate the current objective function value
obj = ObjVal(yopt, Y, beta_cur, D, rho);
obj_mat(i,iter) = obj; % the objective function value over iterations for one point
if obj < thr
obj_mat(i,iter:end) = obj;
break
end
iter = iter + 1;
end
obj_star(i) = min(obj_mat(i,:));
[~, id] = min(obj_mat(i,:));
W(i,idx(nn)) = betas(id,:);
end
end