-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassifiers.py
209 lines (191 loc) · 9.1 KB
/
Classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from sklearn.multioutput import MultiOutputClassifier
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score,confusion_matrix
from joblib import dump, load
import warnings, os
from random import randint
import random
warnings.filterwarnings("ignore")
addNoise = False
redData = False
print('If variable of addNoise is True, the noise wiil be added.')
print('If variable of redData is True, the data will be decreased by 9/10.')
###Load the dataset.###
MultiDataset = np.loadtxt('tictac_multi.txt')
MultiX = MultiDataset[:,:9]
Multiy = MultiDataset[:,9:]
SingleDataset = np.loadtxt('tictac_single.txt')
SingleX = SingleDataset[:,:9]
Singley = SingleDataset[:,9:]
if addNoise:
noise = np.random.normal(0, 1, Multiy.shape) #adding noise to truth labels.
Multiy += noise
noise = np.random.normal(0, 1, Singley.shape) #adding noise to truth labels.
Singley += noise
#After adding noise, turn numeral labels into binary labels.
#Otherwise, the confusion matirx and accuracy cannot be calculated.
Singley[Singley >= 0.5] = 1 #If the number >= 0.5, turn into 1.
Singley[Singley < 0.5] = 0
Multiy[Multiy >= 0.5] = 1
Multiy[Multiy < 0.5] = 0
if redData:
rN = int(len(MultiDataset)-len(MultiDataset)*9/10) #decrease data by a 9 of 10.
MultiX = MultiX[0:rN]
Multiy = Multiy[0:rN]
SingleX = SingleX[0:rN]
Singley = Singley[0:rN]
#Shuffle data. 80% data for CV and 20% data for testing.
X_trainMulti, X_testMulti, y_trainMulti, y_testMulti = train_test_split(MultiX, Multiy, test_size=0.2, random_state=42)
X_trainSingle, X_testSingle, y_trainSingle, y_testSingle = train_test_split(SingleX, Singley, test_size=0.2, random_state=42)
#Current all model's name.
modelsName = ['ClfLinearSVM_multilabel',
'ClfRBFSVM_multilabel',
'ClfKNN_multilabel',
'ClfMLP_multilabel',
'ClfLinearSVM_singlelabel',
'ClfRBFSVM_singlelabel',
'ClfKNN_singlelabel',
'ClfMLP_singlelabel']
#Set up all models.
models = [MultiOutputClassifier(SVC(kernel='linear')),
MultiOutputClassifier(SVC(kernel='rbf')),
MultiOutputClassifier(KNeighborsClassifier()),
MLPClassifier(),
SVC(kernel='linear'),
SVC(kernel='rbf'),
KNeighborsClassifier(),
MLPClassifier()]
#Set up all models' parameters. The current parameters are the best.
modelsParameters =[{'estimator__gamma':['scale'], #For linear SVM with multi lable.
'estimator__coef0':[0],
'estimator__tol':[1e-2]
,'estimator__C':[1],
'estimator__max_iter':[-1]},
{'estimator__gamma':['scale'], #For RBF SVM with multi lable.
'estimator__coef0':[0],
'estimator__tol':[1e-2]
,'estimator__C':[900],
'estimator__max_iter':[-1]},
{'estimator__n_neighbors': [35], #For KNN with multi lable.
'estimator__weights':['distance'],
'estimator__p':[1]},
{'learning_rate': ["constant"], #Fro MLP with multi lable.
'hidden_layer_sizes': [(500,20)],
'alpha': [0.0001], # minimal effect
'warm_start': [False], # minimal effect
'momentum': [0.1], # minimal effect
'learning_rate_init': [1e-3],
'max_iter': [800],
'random_state': [42],
'solver':['adam'],
'activation': ['relu']},
{'gamma':['scale'], #For linear SVM with singel lable.
'coef0':[0],
'tol':[1e-2],
'C':[1],
'max_iter':[-1]},
{'gamma':['scale'], #For RBF SVM with singel lable.
'coef0':[0],
'tol':[1e-2],
'C':[100],
'max_iter':[-1]},
{'n_neighbors': [38], #For KNN with singel lable.
'weights':['distance'],
'p':[1]},
{'learning_rate': ["constant"], #Fro MLP with singel lable.
'hidden_layer_sizes': [(500,20)],
'alpha': [0.0001], # minimal effect
'warm_start': [False], # minimal effect
'momentum': [0.1], # minimal effect
'learning_rate_init': [1e-3],
'max_iter': [500],
'random_state': [42],
'solver':['adam'],
'activation': ['relu']}]
#Save each CV's training accuracy and testing accuracy.
accTrainModels = []
accTestModels = []
for m in range(len(models)):
label = modelsName[m].split('_')[-1]
TrainValiRes = {'TrainAccuracy':[],'ValiAccuracy':[]}
print("vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv")
print('Start cross validation for %s model' %(modelsName[m]))
#Cross validation with 10 k folds.
clf = GridSearchCV(models[m], param_grid=modelsParameters[m], scoring={'ACC': 'accuracy'}, cv=10, refit='ACC',return_train_score=True)
if label == 'multilabel': #Training model.
clf.fit(X_trainMulti, y_trainMulti)
if label == 'singlelabel':
clf.fit(X_trainSingle, y_trainSingle)
idx = 0 #Saving each CV's results including parameters, train ACC, and Valdation ACC.
for param in clf.cv_results_['params']:
for k in param:
keyName = k.split('__')[-1] #Get the name of parameter.
if keyName not in TrainValiRes:
TrainValiRes[keyName]=[]
TrainValiRes[keyName].append(param[k])
TrainValiRes['TrainAccuracy'].append(clf.cv_results_['mean_train_ACC'][idx])
TrainValiRes['ValiAccuracy'].append(clf.cv_results_['mean_test_ACC'][idx])
idx+=1
if not os.path.exists('TrainedCVresults'):
os.makedirs('TrainedCVresults')
TrainValiResToPd = pd.DataFrame(data=TrainValiRes)
TrainValiResToPd.to_excel('./TrainedCVresults/'+modelsName[m]+'_Results.xlsx', index=True)
print("Results of %s model" %(modelsName[m]))
if label == 'multilabel':
#The confusion matrix of multilabel will be 2 by 2 matrix for each column y.
#Show training results of accuracy and confusion matrix.
y_trainPred = clf.predict(X_trainMulti)
ACCtrain = accuracy_score(y_trainMulti, y_trainPred).round(2)
print("Accuracy for training: %s" %(ACCtrain))
print('Confusion matrix for training:')
for i in range(9):
print("Confusion matrix for label {}:".format('x'+str(i)))
print(confusion_matrix(y_trainMulti[:,i], y_trainPred[:,i],normalize='true').round(2))
#Show testing results of accuracy and confusion matrix.
y_testPred = clf.predict(X_testMulti)
ACCtest = accuracy_score(y_testMulti, y_testPred).round(2)
print("Accuracy for testing: %s" %(ACCtest))
print('Confusion matrix for testing:')
for i in range(9):
print("Confusion matrix for label {}:".format('x'+str(i)))
print(confusion_matrix(y_testMulti[:,i], y_testPred[:,i],normalize='true').round(2))
if label == 'singlelabel':
#Show training results of accuracy and confusion matrix.
y_trainPred = clf.predict(X_trainSingle)
ACCtrain = accuracy_score(y_trainSingle, y_trainPred).round(2)
print("Accuracy for training: %s" %(ACCtrain))
print('Confusion matrix for training:')
print(confusion_matrix(y_trainSingle, y_trainPred,normalize='true').round(2))
#Show testing results of accuracy and confusion matrix.
y_testPred = clf.predict(X_testSingle)
ACCtest = accuracy_score(y_testSingle, y_testPred).round(2)
print("Accuracy for testing: %s" %(ACCtest))
print('Confusion matrix for testing:')
print(confusion_matrix(y_testSingle, y_testPred,normalize='true').round(2))
print("ʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌʌ")
accTrainModels.append(ACCtrain)
accTestModels.append(ACCtest)
#Save trained model's parameters.
if not os.path.exists('TrainedParameters'):
os.makedirs('TrainedParameters')
dump(clf, './TrainedParameters/'+modelsName[m]+'.joblib')
#Show bestest model's results.
accTrainModels = np.array(accTrainModels)
accTestModels = np.array(accTestModels)
print('Best classifier model is %s.' %(modelsName[np.argmax(accTestModels)]))
print('Best classifier model training accuracy %s.' %(accTrainModels[np.argmax(accTestModels)]))
print('Best classifier model testing accuracy %s.' %(accTestModels[np.argmax(accTestModels)]))
#Save all models' training and testing records.
totalRes = {}
totalRes['Model'] = modelsName
totalRes['Train ACC'] = accTrainModels
totalRes['Test ACC'] = accTestModels
totalResToPd = pd.DataFrame(data=totalRes)
totalResToPd.to_excel('ClassifiersRes4AllModels.xlsx', index=True)
##############################################################################