-
Notifications
You must be signed in to change notification settings - Fork 141
/
Copy pathactivations.py
63 lines (47 loc) · 2.09 KB
/
activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.keras import backend as K
from tensorflow.keras.utils import get_custom_objects
class ReLU(Layer):
"""Rectified Linear Unit.
It allows a small gradient when the unit is not active:
`f(x) = alpha * x for x < 0`,
`f(x) = x for x >= 0`.
# Input shape
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
# Output shape
Same shape as the input.
# Arguments
alpha: float >= 0. Negative slope coefficient.
# References
- [Rectifier Nonlinearities Improve Neural Network Acoustic Models](https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf)
"""
def __init__(self, alpha=0.0, max_value=None, **kwargs):
super(ReLU, self).__init__(**kwargs)
self.supports_masking = True
self.alpha = alpha
self.max_value = max_value
def call(self, inputs):
return K.relu(inputs, alpha=self.alpha, max_value=self.max_value)
def get_config(self):
config = {'alpha': self.alpha, 'max_value': self.max_value}
base_config = super(ReLU, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class BiReLU(Layer):
def __init__(self, alpha=0.0, max_value=None, **kwargs):
super(BiReLU, self).__init__(**kwargs)
self.supports_masking = True
self.alpha = alpha
self.max_value = max_value
def call(self, inputs):
return K.relu(inputs, alpha=self.alpha, max_value=self.max_value) \
- K.relu(-inputs, alpha=self.alpha, max_value=self.max_value)
def get_config(self):
config = {'alpha': self.alpha, 'max_value': self.max_value}
base_config = super(BiReLU, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
get_custom_objects().update({'ReLU': ReLU})
get_custom_objects().update({'BiReLU': BiReLU})