-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset_generator.py
135 lines (122 loc) · 8.13 KB
/
dataset_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import json
import numpy as np
import csv
import os
t=0
#C:\Users\<username>\Desktop\LeapDeveloperKit_3.2.1+45911_win\LeapSDK\Hackathon
for author in ["author_1","author_2","author_3","author_4"]:
for name in ["good","C","D","I","G","L","W","V","Y","bad"]:
print "..\data_set\\"+author+"\\"+"Data_"+name
for filename in os.listdir("..\data_set\\"+author+"\\"+"Data_"+name):
with open("..\data_set\\"+author+"\\"+"Data_"+name+"\\"+filename) as data_file:
f = json.load(data_file)
def averageArea():
for item in f:
t_s=0
for k in range(len(item['data'])-1):
s=0
for i in range(1,5):
s =(np.array(item['data'][k][str(i)]['mcpPosition']) + np.array(
item['data'][k][str(i+1)]['mcpPosition']))/2.0
area=0.5*np.linalg.norm(np.cross(np.array(item['data'][k][str(i+1)]['tipPosition'])-np.array(item['data'][k][str(i)]['tipPosition']),s-np.array(item['data'][k][str(i)]['tipPosition'])))
t_s+=area
return t_s/(len(item['data']))
def averageSpread():
for item in f:
t_s=0
for val in item['data']:
s=0
for i in range(1,5):
s = np.sqrt(sum((np.array(val[str(i+1)]['tipPosition']) - np.array(val[str(i)]['tipPosition'])) ** 2))
t_s+=s
return t_s/len(item['data'])
def averageDistance():
for item in f:
t_s=0
for k in range(len(item['data'])-1):
s=0
for i in range(1,6):
s = np.sqrt(sum((np.array(item['data'][k+1][str(i)]['tipPosition']) - np.array(item['data'][k][str(i)]['tipPosition'])) ** 2))
t_s+=s
return t_s/(len(item['data'])-1)
def extended_distance(item,val,i):
s=0
if i == 1:
tip_s = np.sqrt(sum((np.array(val[str(6)]['position']) - np.array(val[str(i)]['tipPosition'])) ** 2))
dip_s = np.sqrt(sum((np.array(val[str(6)]['position']) - np.array(val[str(i)]['dipPosition'])) ** 2))
pip_s = np.sqrt(sum((np.array(val[str(6)]['position']) - np.array(val[str(i)]['pipPosition'])) ** 2))
s = max(np.linalg.norm(tip_s), np.linalg.norm(dip_s), np.linalg.norm(pip_s))
else:
tip_s = np.sqrt(
sum((np.array(val[str(6)]['position']) - np.array(val[str(i)]['tipPosition'])) ** 2))
dip_s = np.sqrt(
sum((np.array(val[str(6)]['position']) - np.array(val[str(i)]['dipPosition'])) ** 2))
pip_s = np.sqrt(
sum((np.array(val[str(6)]['position']) - np.array(val[str(i)]['pipPosition'])) ** 2))
mcp_s = np.sqrt(sum((np.array(val[str(6)]['position']) - np.array(val[str(i)]['mcpPosition'])) ** 2))
s=max(np.linalg.norm(tip_s),np.linalg.norm(dip_s),np.linalg.norm(pip_s),np.linalg.norm(mcp_s))
return s
def dip_tip_projection(item,val,i):
vector_s = np.array(val[str(i)]['dipPosition']) - np.array(val[str(i)]['tipPosition'])
scalar_vector= np.array(val[str(6)]['normal'])/np.linalg.norm(np.array(val[str(6)]['normal']))
dot_vector= np.dot(vector_s,np.array(val[str(6)]['normal']))
s = dot_vector*scalar_vector
return s
def unit_vector(vector):
return vector / np.linalg.norm(vector)
def angle_between(v1, v2):
v1_u = unit_vector(v1)
v2_u = unit_vector(v2)
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
def angle(item,val,i):
a=angle_between(np.array(val[str(i)]['direction']),np.array([1,0,1]))
return a
def writecsv_cluster():
global t
if t==0:
t=1
with open('hackwitus_output.csv', 'w') as o:
w = csv.DictWriter(o, ['pinch_strength', 'grab_strength', 'average_distance', 'average_spread',
'average_trispread',
'f1_extended_distance', 'f1_diptip_projection_x', 'f1_diptip_projection_y',
'f1_diptip_projection_z', 'f1_angle',
'f2_extended_distance', 'f2_diptip_projection_x', 'f2_diptip_projection_y',
'f2_diptip_projection_z', 'f2_angle',
'f3_extended_distance', 'f3_diptip_projection_x', 'f3_diptip_projection_y',
'f3_diptip_projection_z', 'f3_angle',
'f4_extended_distance', 'f4_diptip_projection_x', 'f4_diptip_projection_y',
'f4_diptip_projection_z', 'f4_angle',
'f5_extended_distance', 'f5_diptip_projection_x', 'f5_diptip_projection_y',
'f5_diptip_projection_z', 'f5_angle', 'label'])
w.writeheader()
with open('hackwitus_output.csv', 'a') as o:
w = csv.DictWriter(o, ['pinch_strength', 'grab_strength', 'average_distance', 'average_spread',
'average_trispread',
'f1_extended_distance', 'f1_diptip_projection_x', 'f1_diptip_projection_y',
'f1_diptip_projection_z', 'f1_angle',
'f2_extended_distance', 'f2_diptip_projection_x', 'f2_diptip_projection_y',
'f2_diptip_projection_z', 'f2_angle',
'f3_extended_distance', 'f3_diptip_projection_x', 'f3_diptip_projection_y',
'f3_diptip_projection_z', 'f3_angle',
'f4_extended_distance', 'f4_diptip_projection_x', 'f4_diptip_projection_y',
'f4_diptip_projection_z', 'f4_angle',
'f5_extended_distance', 'f5_diptip_projection_x', 'f5_diptip_projection_y',
'f5_diptip_projection_z', 'f5_angle', 'label'])
for item in f:
for val in item['data']:
elem={}
for i in range(1, 6):
elem['pinch_strength']=val[str(6)]['pinch_strength']
elem['grab_strength'] = val[str(6)]['grab_strength']
elem['average_distance']=averageDistance()
elem['average_spread']=averageSpread()
elem['average_trispread']=averageArea()
elem['f'+str(i)+'_extended_distance']= extended_distance(item,val,i)
elem['f' + str(i) + '_diptip_projection_x'] = list(dip_tip_projection(item, val, i))[0]
elem['f' + str(i) + '_diptip_projection_y'] = list(dip_tip_projection(item, val, i))[1]
elem['f' + str(i) + '_diptip_projection_z'] = list(dip_tip_projection(item, val, i))[2]
elem['f'+str(i)+'_angle']=angle(item, val, i)
elem['label']=item['label']
w.writerow(elem)
writecsv_cluster()
print filename