-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathprime.ts
70 lines (64 loc) · 1.73 KB
/
prime.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// O(n)
// each non-prime = smallest prime factor * another number
// SPF: smallest prime factor
function eulersSieve (n: number): number[] {
const primes = []
const isPrime = Array(n + 1).fill(true)
for (let cand = 2; cand <= n; cand++) {
if (isPrime[cand]) primes.push(cand)
// prime is the smallest factor
for (const prime of primes) {
// overflow
if (prime * cand > n) break
isPrime[prime * cand] = false
// prime is no longer the SPF of the above multiple
if (cand % prime === 0) break
}
}
return primes
}
// O(nloglogn)
function eratosthenesSieve (n: number): number[] {
const isPrime = Array(n + 1).fill(true)
for (let p = 2; p * p <= n; p++) {
if (isPrime[p]) {
for (let j = p * p; j <= n; j += p) {
isPrime[j] = false
}
}
}
const primes = []
for (let i = 2; i <= n; i++) if (isPrime[i]) primes.push(i)
return primes
}
function prime (nth: number): number {
let f = 20
if (nth > 5e7) f = 50
if (nth > 1e22) f = 100
return primesLeq(f * nth)[nth - 1]
}
function primesLeq (n: number): number[] {
return n < 1000 ? eratosthenesSieve(n) : eulersSieve(n)
}
// O(n^0.5)
function isPrime (n: number): boolean {
if (n < 2) return false
const primes = primesLeq(Math.floor(Math.sqrt(n)))
for (const p of primes) if (n % p === 0) return false
return true
}
function primeFactors (n: number): Map<number, number> {
const factors = new Map()
const sqrt = Math.sqrt(n)
for (let f = 2; f <= sqrt; f++) {
let count = 0
while (n % f === 0) {
n /= f
count++
}
if (count) factors.set(f, count)
}
if (n > 1) factors.set(n, 1)
return factors
}
export { eulersSieve, eratosthenesSieve, prime, primesLeq, isPrime, primeFactors }