-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdqn.py
229 lines (193 loc) · 8.22 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gym
import torch
import random
import numpy as np
import matplotlib.pyplot as plt
from torch import nn, optim
from collections import deque
from torch.nn import functional as F
def dis_to_con(dis_act, d_action, env):
low = env.action_space.low[ 0 ]
high = env.action_space.high[ 0 ]
return low + (high - low) * dis_act / (d_action - 1)
def smooth_data(data, window_size):
smoothed_data = [ ]
for i in range(len(data)):
window_start = max(0, i - window_size // 2)
window_end = min(len(data), i + window_size // 2 + 1)
window_data = data[ window_start:window_end ]
window_average = np.mean(window_data)
smoothed_data.append(window_average)
return smoothed_data
class RelayBuffer:
def __init__(self, capacity):
self.buffer = deque(maxlen=capacity)
def append(self, state, action, reward, next_state, done):
self.buffer.append((state, action, reward, next_state, done))
def sample(self, batch_size=1):
samples = random.sample(self.buffer, batch_size)
states, actions, rewards, next_states, dones = zip(*samples)
return (torch.cat(states, dim=0),
torch.LongTensor(actions),
torch.tensor(rewards, dtype=torch.float32),
torch.cat(next_states, dim=0),
torch.tensor(dones, dtype=torch.uint8))
def __len__(self):
return len(self.buffer)
class QNet(nn.Module):
def __init__(self, d_state, d_action):
super(QNet, self).__init__()
self.fc1 = nn.Linear(d_state, 512)
self.fc2 = nn.Linear(512, 512)
self.fc3 = nn.Linear(512, d_action)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return self.fc3(x)
class VNet(nn.Module):
def __init__(self, d_state, d_action):
super(VNet, self).__init__()
self.fc1 = nn.Linear(d_state, 512)
self.fc2 = nn.Linear(512, 512)
self.fc_A = nn.Linear(512, d_action)
self.fc_V = nn.Linear(512, 1)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
A = self.fc_A(x)
V = self.fc_V(x)
return V + A - A.mean(dim=-1, keepdim=True)
class DQN:
def __init__(self, d_state, d_action, lr, gamma,
target_update_freq=10, device='cpu',
net=QNet):
self.cnt = 0
self.d_action = d_action
self.gamma = gamma
self.target_update_freq = target_update_freq
self.device = device
self.q_net = net(d_state, d_action).to(device)
self.target_q_net = net(d_state, d_action).to(device)
self.optimizer = optim.Adam(self.q_net.parameters(), lr=lr)
def take_action(self, state, t):
if random.random() < 1 / (t + 1):
return random.randint(0, self.d_action - 1)
return self.q_net(state.to(self.device)).argmax().item()
def _pre_process(self, states, actions, rewards, next_states, dones):
self.optimizer.zero_grad()
states = states.to(self.device)
actions = actions.to(self.device).reshape(-1, 1)
rewards = rewards.to(self.device).reshape(-1, 1)
next_states = next_states.to(self.device)
dones = dones.to(self.device).reshape(-1, 1)
return states, actions, rewards, next_states, dones
def _post_process(self, pred, target, loss_func=F.mse_loss):
loss = loss_func(pred, target).mean()
loss.backward()
self.optimizer.step()
if not (self.cnt % self.target_update_freq):
self.target_q_net.load_state_dict(self.q_net.state_dict())
self.cnt += 1
def update(self, states, actions, rewards, next_states, dones):
states, actions, rewards, next_states, dones = self._pre_process(states, actions, rewards, next_states, dones)
q_vals = self.q_net(states).gather(dim=-1, index=actions)
max_next_q_vals = self.target_q_net(next_states).max(dim=-1)[ 0 ].reshape(-1, 1)
q_targets = rewards + self.gamma * max_next_q_vals * (1 - dones)
self._post_process(q_vals, q_targets)
class DoubleDQN(DQN):
def __init__(self, d_state, d_action, lr, gamma, target_update_freq=10, device='cpu'):
super().__init__(d_state, d_action, lr, gamma, target_update_freq, device)
def update(self, states, actions, rewards, next_states, dones):
states, actions, rewards, next_states, dones = self._pre_process(states, actions, rewards, next_states, dones)
q_table = self.q_net(states)
pred = q_table.gather(dim=-1, index=actions)
best_a = q_table.argmax(dim=-1, keepdim=True)
target = (rewards +
self.gamma * self.target_q_net(next_states).gather(dim=-1, index=best_a) * (1 - dones))
self._post_process(pred, target)
def train(env, agent, buffer, minimal_size, batch_size,
epoches=500, dis_action=True,
debug=True):
reward_history = [ ]
for epoch in range(epoches):
t = 0
reward_sum = 0
state = torch.tensor(env.reset()[ 0 ]).reshape(1, -1)
done = False
while not done:
action = agent.take_action(state, t)
if dis_action:
next_state, reward, done, truncated, _ = env.step(action)
else:
con_action = dis_to_con(action, agent.d_action, env)
next_state, reward, done, truncated, _ = env.step(np.array([ con_action ]))
next_state = torch.tensor(next_state).reshape(1, -1)
done = done or truncated
buffer.append(state, action, reward, next_state, done)
t += 1
state = next_state
reward_sum += reward
if len(buffer) >= minimal_size:
states, actions, rewards, next_states, dones = buffer.sample(batch_size)
agent.update(states, actions, rewards, next_states, dones)
reward_history.append(reward_sum)
if debug and (epoch + 1) % 10 == 0:
print(f"Epoch {epoch + 1}/{epoches}\tReward {reward_sum}")
return reward_history
if __name__ == '__main__':
env = gym.make('Pendulum-v1', render_mode='rgb_array')
con_d_action = 128
dis_action = False
d_action = env.action_space.n if dis_action else con_d_action
capacity = 10000
minimal_size = 256
batch_size = 256
lr = 1e-3
gamma = 0.98
target_update_freq = 10
device = 'cuda' if torch.cuda.is_available() else 'cpu'
smooth_window_size = 5
buffer = RelayBuffer(capacity)
dqn = DQN(env.observation_space.shape[ 0 ],
d_action,
lr,
gamma,
target_update_freq,
device)
double_dqn = DoubleDQN(env.observation_space.shape[ 0 ],
d_action,
lr,
gamma,
target_update_freq,
device)
dueling_dqn = DQN(env.observation_space.shape[ 0 ],
d_action,
lr,
gamma,
target_update_freq,
device,
VNet)
print('==== DQN ====')
dqn_history = train(env, dqn, buffer,
minimal_size, batch_size,
epoches=100, dis_action=dis_action, debug=True)
print('==== Double DQN ====')
double_dqn_history = train(env, double_dqn, buffer,
minimal_size, batch_size,
epoches=100, dis_action=dis_action, debug=True)
print('==== Dueling DQN ====')
dueling_dqn_history = train(env, double_dqn, buffer,
minimal_size, batch_size,
epoches=100, dis_action=dis_action, debug=True)
smooth_dqn = smooth_data(dqn_history, smooth_window_size)
smooth_double_dqn = smooth_data(double_dqn_history, smooth_window_size)
smooth_dueling_dqn = smooth_data(dueling_dqn_history, smooth_window_size)
plt.plot(smooth_dqn, label='DQN')
plt.plot(smooth_double_dqn, label='Double DQN')
plt.plot(smooth_dueling_dqn, label='Dueling DQN')
plt.xlabel('Epoch')
plt.ylabel('Reward')
plt.legend()
plt.show()