-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
177 lines (137 loc) · 4.98 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def process_song_file(cur, filepath):
'''
This procedure process songs files, reading, transforming
and inserting on database.
It extracts the artist and song information in order to store
it into the artists and the songs tables.
Parameters
----------
cur : psycopg2.connection.cursor
The database connection cursor for execute insertion queries
filepath : string
The string of songs file path
'''
# open song file
df = pd.read_json(filepath, typ='series')
# insert artist record
artist_data = df[[
'artist_id',
'artist_name',
'artist_location',
'artist_latitude',
'artist_longitude'
]].values.tolist()
cur.execute(artist_table_insert, artist_data)
# insert song record
song_data = df[['song_id', 'title', 'artist_id', 'year', 'duration']].values.tolist()
cur.execute(song_table_insert, song_data)
def process_log_file(cur, filepath):
'''
This procedure process logs files, reading, transforming
and inserting on database.
It extracts the date, user and songplay information in order
to store it into the time, users and songplayes tables.
Parameters
----------
cur : psycopg2.connection.cursor
The database connection cursor for execute insertion queries
filepath : string
The string of logs file path
'''
# open log file
df = pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df[df.page == 'NextSong']
"""
create a new dataframe converting timestamp column to datetime in a new column
and keeping the original value
"""
t = pd.DataFrame()
t['ts'] = df['ts']
t['tsc'] = df['ts'].apply(lambda ts: pd.to_datetime(ts, unit='ms'))
# insert time data records
time_data = ([
t.ts,
t.tsc.dt.hour,
t.tsc.dt.day,
t.tsc.dt.week,
t.tsc.dt.month,
t.tsc.dt.year,
t.tsc.dt.weekday
])
column_labels = ('start_time', 'hour', 'day', 'week', 'month', 'year', 'weekday')
time_df = pd.DataFrame(time_data, index=column_labels).transpose()
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = df[['userId', 'firstName', 'lastName', 'gender', 'level']]
# insert user records
for i, row in user_df.iterrows():
try:
cur.execute(user_table_insert, row)
except psycopg2.Error as err:
print(err)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
if songid and artistid:
songplay_data = (row.ts, row.userId, row.level, songid, artistid, row.sessionId, row.location, row.userAgent)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
'''
This procedure read and execute a process for all kinds file
inside path. To do it, the procedure executing a specific
function to process a specific kind of file. These files can be
`songs` or `logs` file.
Parameters
----------
cur : psycopg2.connection.cursor
The database connection cursor
conn : psycopg2.connection
The database connection
filepath : string
The string of path containing a kind of files
func : function
The function called to process files in a specific path
'''
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
print('data process finished.')
def main():
'''
This is the main procedure. The start point of the ETL process.
Here the connection to the database is opened, the file paths are defined
and the execution starts.
'''
conn = psycopg2.connect("host=postgres dbname=sparkifydb user=postgres password=example")
conn.set_session(autocommit=True)
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()