-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanswering.py
214 lines (163 loc) ยท 7.08 KB
/
answering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import argparse
import logging
import math
import time
import gluonnlp as nlp
import mxnet as mx
import pandas as pd
from gluonnlp.data import SentencepieceTokenizer
from kogpt2.mxnet_kogpt2 import get_mxnet_kogpt2_model
from kogpt2.utils import get_tokenizer
import pyrebase
from datetime import datetime
import requests
import json
#Gluon์์ ์ ๊ฒฝ๋ง์ ๋ง๋
from mxnet import gluon, nd
from mxnet.gluon import nn
logger = logging.getLogger()
logger.setLevel(logging.INFO)
U_TKN = '<usr>'
S_TKN = '<sys>'
BOS = '<s>'
EOS = '</s>'
MASK = '<unused0>'
SENT = '<unused1>'
#train_set = ChatDataset(data์
, get_tokenizer(), vocab, max_len=max_len)
class ChatDataset(gluon.data.Dataset):
#chats = data ์์
def __init__(self, chats, tok_path, vocab, max_len=32):
self._data = chats
self._tok_path = tok_path #get_tokenizer()
self.tokenizer = None #None
self.first = True #first
self.q_token = U_TKN #<usr>
self.a_token = S_TKN #<sys>
self.sent_token = SENT #<unused1>
self.bos = BOS #<s>
self.eos = EOS #</s>
self.maskt = MASK #<unused0>
self.vocab = vocab
self.max_len = max_len
self.padder = nlp.data.PadSequence(
max_len, pad_val=self.vocab[self.vocab.padding_token])
#tokenizer์์
def _activate_sp(self):
self.tokenizer = nlp.data.SentencepieceTokenizer(self._tok_path, 0, 0)
def __len__(self):
return len(self._data)
def __getitem__(self, idx):
if self.tokenizer is None:
self._activate_sp()
#ํ๋์ ๋ฐ์ดํฐ ๋ฌธ์ฅ [์ฌ์ฉ์๊ฐ ๋ฌผ์ด๋ณด๋ ๋ฌธ์ฅ, ์ฑ๋ด์ด ๋๋ตํ๋ ๋ฌธ์ฅ, ๊ฐ์ ๋ถ๋ฅ]
turn = self._data.iloc[idx]
#=================================================================
#์ฌ์ฉ์๊ฐ ๋ฌผ์ด๋ณด๋ ๋ฌธ์ฅ['Q']
q = turn['Q']
#์ฑ๋ด์ด ๋๋ตํ๋ ๋ฌธ์ฅ['A']
a = turn['A']
#๊ฐ์ ๋ถ๋ฅ ์ซ์
sentiment = str(turn['label'])
#์ฌ์ฉ์๊ฐ ๋ฌผ์ด๋ณด๋ ๋ฌธ์ฅ์ ํ ํฐํํ๊ธฐ
q_toked = [
self.q_token, #<usr>
] + self.tokenizer(q) + [ #์ฌ์ฉ์๊ฐ ๋ฌผ์ด๋ณด๋ ๋ฌธ์ฅ์ ๋ํด ํ ํฐํํ๊ธฐ
self.eos, #</s>
] + [self.sent_token] + self.tokenizer(sentiment) + [ #๊ฐ์ ๋ถ๋ฅ
self.eos, #</s>
]
#์ฌ์ฉ์๊ฐ ๋ฌผ์ด๋ณด๋ ๋ฌธ์ฅ์ ๋ํด ํ ํฐํํ๊ฑฐ์ ๋ํ ๊ธธ์ด
q_len = len(q_toked)
#์ฑ๋ด์ด ๋๋ตํ๋ ๋ฌธ์ฅ['A']
a_toked = [
self.a_token, #<sys>
] + self.tokenizer(a) + [ #์ฑ๋ด์ด ๋๋ตํ๋ ๋ฌธ์ฅ ํ ํฐํํ๊ธฐ
self.eos, #</s>
]
#์ฑ๋ด์ด ๋๋ตํ๋ ๋ฌธ์ฅ ๊ธธ์ด
a_len = len(a_toked)
#=================================================================
#๋ง์ฝ์ ์ฑ๋ด์ด ๋๋ตํ๋ ๋ฌธ์ฅ์ ๊ธธ์ด์ ์ฌ์ฉ์๊ฐ ๋ฌผ์ด๋ณด๋ ๋ฌธ์ฅ์ ๊ธธ์ด๊ฐ
#์ต๋ ์ค์ ๊ธธ์ด๋ณด๋ค ํฌ๋ค๋ฉด
#=================================================================
#์์ธ ์ฒ๋ฆฌ ์ฝ๋
if q_len + a_len > self.max_len:
a_len = self.max_len - q_len
a_toked = a_toked[-a_len:]
assert a_len == len(a_toked)
#=================================================================
# [<mask>, <mask>, ...., <mask>, ..., A.. <eos>, <pad>....]
# ex) ['<unused0>', '<unused0>', '<unused0>', '<unused0>', '<unused0>', '<unused0>', '<unused0>', '<unused0>',
#'<unused0>', '<unused0>', 'โํ๋ฃจ๊ฐ', 'โ๋', 'โ๊ฐ', '๋ค์', '.', '</s>']
labels = [
self.maskt, #MASK
] * q_len + a_toked[1:] #<sys>๋ง ๋นผ๊ณ ['โํ๋ฃจ๊ฐ', 'โ๋', 'โ๊ฐ', '๋ค์', '.', '</s>']
#๋ง์ฝ์ ์ฒ์์ด๋ผ๋ฉด self.first == True ๋ผ๋ฉด?
if self.first:
#๋ค์ ๋ด์ฉ๋ค์ ์ถ๋ ฅํ๋ค
logging.info("contexts : {} \ntoked ctx: {} \nresponse : {} \ntoked response {} \nlabels {}".format(q, q_toked, a, a_toked, labels))
self.first = False
#ex) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
#1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
mask = [0] * q_len + [1] * a_len + [0] * (self.max_len - q_len - a_len)
return (self.padder(self.vocab[q_toked + a_toked]), nd.array(mask),
self.padder(self.vocab[labels]))
#([2, 385, 47460, 47437, 49108, 47812, 1, 7, 640, 1, 4, 33203, 252, 119, 7974, 47440, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
#[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0.
#0. 0. 0. 0. 0. 0. 0. 0.]
#<NDArray 32 @cpu(0)>, [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 33203, 252, 119, 7974, 47440, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3])
class KoGPT2Chat(nn.HybridBlock):
def __init__(self, kogpt2, prefix=None, params=None):
super(KoGPT2Chat, self).__init__(prefix=prefix, params=params)
self.kogpt2 = kogpt2
def hybrid_forward(self, F, inputs):
# (batch, seq_len, hiddens)
output, _ = self.kogpt2(inputs)
return output
if mx.context.num_gpus() > 0:
ctx = mx.gpu()
else:
ctx = mx.cpu()
model_params = 'C:\\Users\\PC\\Desktop\\chat ui\\KoGPT2-chatbot\\kogpt2_chat.params'
sent = '0'
tok_path = get_tokenizer()
model, vocab = get_mxnet_kogpt2_model(ctx=ctx)
tok = SentencepieceTokenizer(tok_path, num_best=0, alpha=0)
kogptqa = KoGPT2Chat(model)
kogptqa.load_parameters(model_params, ctx=ctx)
sent_tokens = tok(sent)
url = "http://localhost:3000"
data = {'msg': 'Hi!!!'}
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'}
res = requests.post(url, data=json.dumps(data), headers=headers)
while 1:
try :
q = res.json()['user']
except :
q = "์๋
"
print(q)
if q == 'quit':
break
q_tok = tok(q)
a = ''
a_tok = []
while 1:
input_ids = mx.nd.array([vocab[U_TKN]] + vocab[q_tok] +
vocab[EOS, SENT] + vocab[sent_tokens] +
vocab[EOS, S_TKN] +
vocab[a_tok]).expand_dims(axis=0)
pred = kogptqa(input_ids.as_in_context(ctx))
gen = vocab.to_tokens(
mx.nd.argmax(
pred,
axis=-1).squeeze().astype('int').asnumpy().tolist())[-1]
if gen == EOS:
break
a += gen.replace('โ', ' ')
a_tok = tok(a)
data = {'msg': a.strip()}
res = requests.post(url, data=json.dumps(data), headers=headers)
print("ํ๋๋ฒ ์ด> {}".format(a.strip()))
chatting = {"chat":[q, a]}
#์ธํฐํ๋ฆฌํฐ์์ ์ง์ ์คํ๋ ๊ฒฝ์ฐ์๋ง IF๋ฌธ ์ดํ์ ์ฝ๋๋ฅผ ์คํํ
#CMD์์ python train.py๋ฅผ ํ๋ฉด ์คํ๋๋ค