-
Notifications
You must be signed in to change notification settings - Fork 9
/
main.py
234 lines (204 loc) · 12.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import math
import torch
import argparse
import warnings
import numpy as np
from tqdm import tqdm
from utils import load_model
from torch.utils.data import DataLoader
import time
from utils.functions import reconnect
from utils.functions import load_problem
import pprint as pp
from utils.insertion import random_insertion
from heatmap.cvrp.infer import load_partitioner
from heatmap.cvrp.inst import sum_cost
def eval_dataset(dataset_path, opts):
pp.pprint(vars(opts))
revisers = []
revision_lens = opts.revision_lens
for reviser_size in revision_lens:
reviser_path = f'pretrained/Reviser-stage2/reviser_{reviser_size}/epoch-299.pt'
reviser, _ = load_model(reviser_path, is_local=True)
revisers.append(reviser)
for reviser in revisers:
reviser.to(opts.device)
reviser.eval()
reviser.set_decode_type(opts.decode_strategy)
results, duration = _eval_dataset(dataset_path, opts, opts.device, revisers)
costs, costs_revised, costs_revised_with_penalty, tours = zip(*results)
costs = torch.tensor(costs)
if opts.problem_type in ['cvrp', 'cvrplib']:
costs_revised = torch.stack(costs_revised)
else:
costs_revised = torch.cat(costs_revised, dim=0)
if opts.problem_type == 'pctsp':
costs_revised_with_penalty = torch.cat(costs_revised_with_penalty, dim=0)
print("Average cost: {} +- {}".format(costs.mean(), (2 * torch.std(costs) / math.sqrt(len(costs))).item()))
print("Average cost_revised: {} +- {}".format(costs_revised.mean().item(),
(2 * torch.std(costs_revised) / math.sqrt(len(costs_revised))).item()))
if opts.problem_type == 'pctsp':
print("Average cost_revised with penalty: {} +- {}".format(costs_revised_with_penalty.mean().item(),
(2 * torch.std(costs_revised_with_penalty) / math.sqrt(len(costs_revised_with_penalty))).item()))
print("Total duration: {}".format(duration))
if opts.problem_type != 'cvrp':
tours = torch.cat(tours, dim=0)
return tours
def _eval_dataset(dataset_path, opts, device, revisers):
start = time.time()
if opts.problem_type == 'tsp':
dataset = revisers[0].problem.make_dataset(filename=dataset_path, num_samples=opts.val_size, offset=0)
if opts.problem_size <= 100:
if opts.width >= 4:
opts.width //= 4
opts.tsp_aug = True
else:
opts.tsp_aug = False
orders = [torch.randperm(opts.problem_size) for i in range(opts.width)]
pi_all = [random_insertion(instance, orders[order_id])[0] for order_id in range(len(orders)) for instance in dataset] # instance: (p_size, 2)
pi_all = torch.tensor(np.array(pi_all).astype(np.int64)).reshape(len(orders), opts.val_size, opts.problem_size) # width, val_size, p_size
elif opts.problem_type == 'pctsp': # dataset (n_cons*val_size, p_size, 2), pi_all (width, n_cons*val_size, p_size), penalty (n_cons, val_size)
from problems.pctsp import init
opts.eval_batch_size = opts.eval_batch_size * opts.n_subset
dataset, penalty= init(dataset_path, opts) # (n_val*n_subset, max_seq_len, 2), (val_size*n_subset, )
dataset = dataset.cpu()
max_seq_len = dataset.size(1)
order = torch.arange(max_seq_len) # width=1 by default for pctsp
pi_all = [random_insertion(instance, order)[0] for instance in dataset]
pi_all = torch.tensor(np.array(pi_all).astype(np.int64)).unsqueeze(0) # (1, n_val*n_subset, max_seq_len)
assert pi_all.shape == (1, opts.val_size*opts.n_subset, max_seq_len)
elif opts.problem_type == 'cvrp':
from problems.cvrp import init
dataset, n_tsps_per_route_lst = init(dataset_path, opts)
opts.eval_batch_size = 1
elif opts.problem_type == 'cvrplib':
from problems.cvrp import init
ckpt_path = "./pretrained/Partitioner/cvrp/cvrp-2000-cvrplib.pt" if opts.ckpt_path == '' else opts.ckpt_path
partitioner = load_partitioner(2000, opts.device, ckpt_path, 300, 6)
dataset, n_tsps_per_route_lst = init(dataset_path, opts, partitioner)
opts.eval_batch_size = 1
dataloader = DataLoader(dataset, batch_size=opts.eval_batch_size)
problem = load_problem('tsp')
get_cost_func = lambda input, pi: problem.get_costs(input, pi, return_local=True)
results = []
for batch_id, batch in tqdm(enumerate(dataloader), disable=opts.no_progress_bar):
# tsp batch shape: (bs, problem size, 2)
avg_cost = 0
with torch.no_grad():
if opts.problem_type in ['tsp', 'pctsp']:
p_size = batch.size(1)
batch = batch.repeat(opts.width, 1, 1) # (1,1,1) for pctsp
pi_batch = pi_all[:, batch_id*opts.eval_batch_size: (batch_id+1)*opts.eval_batch_size, :].reshape(-1, p_size)
seed = batch.gather(1, pi_batch.unsqueeze(-1).repeat(1,1,2))
elif opts.problem_type in ['cvrp', 'cvrplib']:
batch = batch.squeeze() # (n_subTSPs_for_width_routes, max_seq_len, 2)
n_subTSPs, max_seq_len, _ = batch.shape
n_tsps_per_route = n_tsps_per_route_lst[batch_id]
assert sum(n_tsps_per_route) == n_subTSPs
opts.eval_batch_size = n_subTSPs
order = torch.arange(max_seq_len)
pi_batch = [random_insertion(instance, order)[0] for instance in batch]
pi_batch = torch.tensor(np.array(pi_batch).astype(np.int64))
assert pi_batch.shape == (n_subTSPs, max_seq_len)
seed = batch.gather(1, pi_batch.unsqueeze(-1).repeat(1,1,2))
assert seed.shape == (n_subTSPs, max_seq_len, 2)
else:
raise NotImplementedError
seed = seed.to(device)
cost_ori = (seed[:, 1:] - seed[:, :-1]).norm(p=2, dim=2).sum(1) + (seed[:, 0] - seed[:, -1]).norm(p=2, dim=1)
if opts.problem_type in ['tsp', 'pctsp']:
cost_ori, _ = cost_ori.reshape(-1, opts.eval_batch_size).min(0) # width, bs
avg_cost = cost_ori.mean().item()
elif opts.problem_type in ['cvrp', 'cvrplib']:
avg_cost = sum_cost(cost_ori, n_tsps_per_route).min()
else:
raise NotImplementedError
if opts.problem_size <= 100 and opts.problem_type=='tsp' and opts.tsp_aug:
seed2 = torch.cat((1 - seed[:, :, [0]], seed[:, :, [1]]), dim=2)
seed3 = torch.cat((seed[:, :, [0]], 1 - seed[:, :, [1]]), dim=2)
seed4 = torch.cat((1 - seed[:, :, [0]], 1 - seed[:, :, [1]]), dim=2)
seed = torch.cat((seed, seed2, seed3, seed4), dim=0)
tours, costs_revised = reconnect(
get_cost_func=get_cost_func,
batch=seed,
opts=opts,
revisers=revisers,
)
if opts.problem_type == 'pctsp':
costs_revised_with_penalty, costs_revised_minidx = (costs_revised.reshape(-1, opts.n_subset)+ \
penalty[batch_id*opts.eval_batch_size: (batch_id+1)*opts.eval_batch_size].reshape(-1, opts.n_subset)).min(1)
costs_revised, _ = costs_revised.reshape(-1, opts.n_subset).min(1)
tours = tours.reshape(-1, opts.n_subset, max_seq_len, 2)[torch.arange(opts.eval_batch_size//opts.n_subset), costs_revised_minidx, :, :]
assert costs_revised.size(0) == costs_revised_with_penalty.size(0) == tours.size(0) == opts.eval_batch_size//opts.n_subset
elif opts.problem_type in ['cvrp', 'cvrplib']:
assert costs_revised.shape == (n_subTSPs,)
costs_revised, best_partition_idx = sum_cost(costs_revised, n_tsps_per_route).min(dim=0)
subtour_start = sum(n_tsps_per_route[:best_partition_idx])
tours = tours[subtour_start: subtour_start+n_tsps_per_route[best_partition_idx]]
assert tours.shape == (n_tsps_per_route[best_partition_idx], max_seq_len, 2)
tours = tours.reshape(-1, 2)
if opts.problem_type == 'pctsp':
results.append((avg_cost, costs_revised, costs_revised_with_penalty, tours))
elif opts.problem_type in ['tsp', 'cvrp', 'cvrplib']:
results.append((avg_cost, costs_revised, None, tours))
else:
raise NotImplementedError
duration = time.time() - start
return results, duration
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--problem_size", type=int, default=200)
parser.add_argument("--problem_type", type=str, default='tsp')
parser.add_argument('--val_size', type=int, default=128,
help='Number of instances used for reporting validation performance')
parser.add_argument('--eval_batch_size', type=int, default=128,
help="Batch size to use during (baseline) evaluation")
parser.add_argument('--revision_lens', nargs='+', default=[20] ,type=int,
help='The sizes of revisers')
parser.add_argument('--revision_iters', nargs='+', default=[10,], type=int,
help='Revision iterations (I_n)')
parser.add_argument('--decode_strategy', type=str, default='sampling', help='decode strategy of the model')
parser.add_argument('--no_cuda', action='store_true', help='Disable CUDA')
parser.add_argument("--device_id", type=int, default=0)
parser.add_argument('--no_progress_bar', action='store_true', help='Disable progress bar')
parser.add_argument('--width', type=int, default=1,
help='The initial solutions for a TSP instance generated with diversified insertion')
parser.add_argument('--no_aug', action='store_true', help='Disable instance augmentation')
parser.add_argument('--path', type=str, default='',
help='The test dataset path for cross-distribution evaluation')
parser.add_argument('--seed', type=int, default=1, help='Random seed')
parser.add_argument('--n_subset', type=int, default=1, help='The number of stochastically constructed PCTSP node subsets')
parser.add_argument('--n_partition', type=int, default=1, help='The number of stochastically constructed CVRP partitions')
parser.add_argument('--ckpt_path', type=str, default='', help='Checkpoint path for CVRP eval')
parser.add_argument('--no_prune', action='store_true', help='Do not prune the unpromising tours after the first round of revisions')
opts = parser.parse_args()
use_cuda = torch.cuda.is_available() and not opts.no_cuda
device_id = opts.device_id
device = torch.device(f"cuda:{device_id}" if use_cuda else "cpu")
opts.device = device
print('using device:', device)
if opts.path == '':
if opts.problem_type == 'tsp':
opts.path = f'data/tsp/tsp{opts.problem_size}_test.pkl'
elif opts.problem_type == 'cvrp':
opts.path = f'data/vrp/vrp{opts.problem_size}_test_seed1234.pkl'
elif opts.problem_type == 'pctsp':
opts.path = f'data/pctsp/pctsp{opts.problem_size}_test_seed1234.pkl'
else:
raise NotImplementedError
if opts.problem_type == 'cvrp':
if opts.eval_batch_size != 1:
opts.eval_batch_size = 1
warnings.warn('Set eval_batch_size to 1 for CVRP!')
if opts.width != 1:
opts.width = 1
warnings.warn('Set width to 1 for CVRP!')
if opts.n_partition != 1:
opts.n_partition = 1
warnings.warn('Set n_partition to 1 for CVRP!')
if opts.problem_type == 'pctsp':
if opts.width != 1:
opts.width = 1
warnings.warn('Set width to 1 for PCTSP!')
torch.manual_seed(opts.seed)
tours = eval_dataset(opts.path, opts)