-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
executable file
·169 lines (143 loc) · 5.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
# from torchvision.models import resnet34
from dataset import DatasetGenerator
from models import *
from losses import *
from torch.optim.lr_scheduler import CosineAnnealingLR, StepLR
import random
from utils import *
from config import *
from norm import pNorm
import matplotlib.pyplot as plt
import seaborn as sb
sb.set_style('darkgrid')
plt.switch_backend('agg')
plt.figure(figsize=(20, 20), dpi=600)
parser = argparse.ArgumentParser(description='Robust loss for learning with noisy labels')
parser.add_argument('--dataset', type=str, default="MNIST", metavar='DATA', help='Dataset name (default: CIFAR10)')
parser.add_argument('--root', type=str, default="../database/", help='the data root')
parser.add_argument('--noise_type', type=str, default='symmetric', help='the noise type: clean, symmetric, pairflip, asymmetric')
parser.add_argument('--noise_rate', type=float, default=0.8, help='the noise rate')
parser.add_argument('--gpus', type=str, default='1')
# learning settings
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--num_workers', type=int, default=10, help='the number of worker for loading data')
parser.add_argument('--grad_bound', type=float, default=5., help='the gradient norm bound')
parser.add_argument('--seed', type=int, default=123)
parser.add_argument('--is_sparse', type=int, default=1, help='if use the sparse regularizatoin mechanism')
parser.add_argument('--loss', type=str, default='GCE', help='the loss functions: CE, FL, GCE')
args = parser.parse_args()
if args.is_sparse:
args.is_sparse = True
label = args.loss + '+SR'
else:
args.is_sparse = False
label = args.loss
if args.noise_rate == 0.0:
args.noise_type = 'clean'
if args.noise_type == 'asymmetric':
asymm = True
else:
asymm = False
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('We are using', device)
if device == 'cuda':
torch.cuda.manual_seed(args.seed)
else:
torch.manual_seed(args.seed)
seed = 123
random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
print(args)
def evaluate(loader, model):
model.eval()
correct = 0.
total = 0.
for x, y in loader:
x, y = x.to(device), y.to(device)
z = model(x)
probs = F.softmax(z, dim=1)
pred = torch.argmax(probs, 1)
total += y.size(0)
correct += (pred==y).sum().item()
acc = float(correct) / float(total)
return acc
def calculate_loss(criterion, out, y, norm=None, lamb=None, tau=None, p=None):
if args.is_sparse:
if args.dataset != 'MNIST':
out = F.normalize(out, dim=1)
loss = criterion(out / tau, y) + lamb * norm(out / tau, p)
else:
loss = criterion(out, y)
return loss
data_loader = DatasetGenerator(data_path=os.path.join(args.root, args.dataset),
num_of_workers=args.num_workers,
seed=args.seed,
asym=args.noise_type=='asymmetric',
dataset_type=args.dataset,
noise_rate=args.noise_rate
)
data_loader = data_loader.getDataLoader()
train_loader = data_loader['train_dataset']
test_loader = data_loader['test_dataset']
tau, p, lamb, rho, freq = get_params_sr(args.dataset, label)
if args.dataset == 'MNIST':
in_channels = 1
num_classes = 10
weight_decay = 1e-3
lr = 0.01
epochs = 50
elif args.dataset == 'CIFAR10':
in_channels = 3
num_classes = 10
weight_decay = 1e-4
lr = 0.01
elif args.dataset == 'CIFAR100':
in_channels = 3
num_classes = 100
weight_decay = 1e-5
lr = 0.1
epochs = 200
lamb = 10 if asymm else 4
else:
raise ValueError('Invalid value {}'.format(args.dataset))
criterion = get_loss_config(args.dataset, train_loader, num_classes=num_classes, loss=args.loss, is_sparse=args.is_sparse)
if args.is_sparse:
norm = pNorm(p)
else:
norm = None
print(label)
if args.dataset != 'CIFAR100':
model = CNN(type=args.dataset).to(device)
else:
model = ResNet34(num_classes=100).to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=weight_decay)
scheduler = CosineAnnealingLR(optimizer, T_max=epochs, eta_min=0.0)
# scheduler = StepLR(optimizer, gamma=0.1, step_size=25)
for ep in range(epochs):
model.train()
total_loss = 0.
for batch_x, batch_y in train_loader:
batch_x, batch_y = batch_x.to(device), batch_y.to(device)
model.zero_grad()
optimizer.zero_grad()
out = model(batch_x)
loss = calculate_loss(criterion, out, batch_y, norm, lamb, tau, p)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_bound)
optimizer.step()
total_loss += loss.item()
scheduler.step()
test_acc = evaluate(test_loader, model)
log('Iter {}: loss={:.4f}, test_acc={:.4f}'.format(ep, total_loss, test_acc))
if (ep + 1) % freq == 0:
lamb = lamb * rho