
System V Application Binary Interface
Intel MCU Architecture Supplement

Version 0.7

Edited by
H.J. Lu1

Based on

System V Application Binary Interface

Intel386 Architecture Processor Supplement

Edited by

H.J. Lu2, David L Kreitzer3, Milind Girkar4, Zia Ansari5

July 3, 2015

1hongjiu.lu@intel.com
2hongjiu.lu@intel.com
3david.l.kreitzer@intel.com
4milind.girkar@intel.com
5zia.ansari@intel.com

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Contents

1 About this Document 5
1.1 Scope . 5
1.2 Changes from Intel386 System V ABI 5
1.3 Related Information . 7

2 Low Level System Information 8
2.1 Machine Interface . 8

2.1.1 Data Representation . 8
2.2 Function Calling Sequence . 10

2.2.1 Registers . 10
2.2.2 The Stack Frame . 11
2.2.3 Parameter Passing and Returning Values 11
2.2.4 Variable Argument Lists 16

2.3 Process Initialization . 16
2.3.1 Initial Stack and Register State 16
2.3.2 Auxiliary Vector . 18

2.4 DWARF Definition . 21
2.4.1 DWARF Release Number 21
2.4.2 DWARF Register Number Mapping 22

2.5 Stack Unwind Algorithm . 23

3 Object Files 25
3.1 ELF Header . 25

3.1.1 Machine Information . 25
3.1.2 Number of Program Headers 25

3.2 Sections . 26
3.2.1 Special Sections . 26
3.2.2 EH_FRAME sections 26

1

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

3.3 Symbol Table . 30
3.4 Relocation . 31

3.4.1 Relocation Types . 31

4 Libraries 35
4.1 Unwind Library Interface . 35

4.1.1 Exception Handler Framework 36
4.1.2 Data Structures . 38
4.1.3 Throwing an Exception 41
4.1.4 Exception Object Management 44
4.1.5 Context Management . 44
4.1.6 Personality Routine . 46

5 Development Environment 51

6 Conventions 52
6.1 C++ . 53

2

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

List of Tables

2.1 Scalar Types . 9
2.2 Stack Frame with Base Pointer 11
2.3 Register Usage . 13
2.4 Return Value Locations for Fundamental Data Types 14
2.5 Parameter Passing Example . 15
2.6 Register Allocation for Parameter Passing Example 15
2.7 Stack Layout at the Call . 15
2.8 EFLAGS Bits . 16
2.9 Initial Process Stack . 17
2.10 auxv_t Type Definition . 18
2.11 Auxiliary Vector Types . 19
2.12 DWARF Register Number Mapping 22
2.13 Pointer Encoding Specification Byte 24

3.1 Special sections . 26
3.2 Common Information Entry (CIE) 27
3.3 CIE Augmentation Section Content 28
3.4 Frame Descriptor Entry (FDE) 29
3.5 FDE Augmentation Section Content 30
3.6 Relocation Types . 33

5.1 Predefined Pre-Processor Symbols 51

3

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

List of Figures

3.1 Relocatable Fields . 31

Revision History
0.6 — 2015-05-11 Initial draft.

0.7 — 2015-07-03 Remove the reference to popping the implicit pointer argu-
ment off the stack.

4

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Chapter 1

About this Document

This document is a supplement to the existing Intel386 System V Application Bi-
nary Interface (ABI) document available at http://www.sco.com/developers/
devspecs/abi386-4.pdf, which describes the ABI for processors compati-
ble with the Intel MCU Architecture, which supports Intel Pentium instruction set
minus instructions for x87 floating point unit.

This document describes the conventions and constraints on the implementa-
tion of these new features for interoperability between various tools.

1.1 Scope
This document describes the conventions on the new C/C++ language types (in-
cluding alignment and parameter passing conventions), the relocation symbols in
the object binary, and the exception handling mechanism for Intel MCU architec-
ture. Some of this work has been discussed before http://groups.google.
com/group/ia32-abi or http://www.akkadia.org/drepper/tls.
pdf. The C++ object model that is expected to be followed is described in http:
//mentorembedded.github.io/cxx-abi/. In particular, this document
specifies the information that compilers have to generate and the library routines
that do the frame unwinding for exception handling.

1.2 Changes from Intel386 System V ABI
The calling conventions specified in Intel MCU System V ABI are incompatible
with Intel386 System V ABI:

5

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

http://www.sco.com/developers/devspecs/abi386-4.pdf
http://www.sco.com/developers/devspecs/abi386-4.pdf
http://groups.google.com/group/ia32-abi
http://groups.google.com/group/ia32-abi
http://www.akkadia.org/drepper/tls.pdf
http://www.akkadia.org/drepper/tls.pdf
http://mentorembedded.github.io/cxx-abi/
http://mentorembedded.github.io/cxx-abi/

• The minimum instruction set is Intel Pentium ISA minus instructions for
x87 floating point unit.

• There are no x87 floating point registers.

• There are no vector registers.

• Segment registers are optional.

• Support for TLS relocations are optional.

• Scalar types larger than 4 bytes are aligned to 4 bytes.

• There are no vector types.

• _Decimal32, _Decimal64, and _Decimal128 types are optional.

• long double type is the same as double.

• float, double and long double types are passed and returned in
general purpose registers.

• _Decimal32 and _Decimal64 types are passed in general purpose reg-
isters.

• Aggregate types no larger than 8 bytes are passed and returned in general
purpose registers.

• Stack is 4-byte aligned.

• The auxiliary vector support is optional.

• Register %edx has undefined value at process entry.

• New ELF machine code: EM_IAMCU.

• New predefined C/C++ pre-processor symbols: __iamcu and __iamcu__.

6

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

1.3 Related Information
Links to useful documents:

• System V Application Binary Interface, Intel386TM Architecture Processor
Supplement Fourth Edition: http://www.sco.com/developers/
devspecs/abi386-4.pdf

• System V Application Binary Interface, AMD64 Architecture Processor
Supplement, Draft Version 0.99.6: http://www.x86-64.org/documentation/
abi.pdf

• Discussion of Intel processor extensions: http://groups.google.
com/group/ia32-abi

• ELF Handling of Thread-Local Storage: http://www.akkadia.org/
drepper/tls.pdf

• Thread-Local Storage Descriptors for IA32 and AMD64/EM64T: http:
//www.fsfla.org/~lxoliva/writeups/TLS/RFC-TLSDESC-x86.
txt

• Itanium C++ ABI, Revised March 20, 2001: http://mentorembedded.
github.io/cxx-abi/

7

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

http://www.sco.com/developers/devspecs/abi386-4.pdf
http://www.sco.com/developers/devspecs/abi386-4.pdf
http://www.x86-64.org/documentation/abi.pdf
http://www.x86-64.org/documentation/abi.pdf
http://groups.google.com/group/ia32-abi
http://groups.google.com/group/ia32-abi
http://www.akkadia.org/drepper/tls.pdf
http://www.akkadia.org/drepper/tls.pdf
http://www.fsfla.org/~lxoliva/writeups/TLS/RFC-TLSDESC-x86.txt
http://www.fsfla.org/~lxoliva/writeups/TLS/RFC-TLSDESC-x86.txt
http://www.fsfla.org/~lxoliva/writeups/TLS/RFC-TLSDESC-x86.txt
http://mentorembedded.github.io/cxx-abi/
http://mentorembedded.github.io/cxx-abi/

Chapter 2

Low Level System Information

This section describes the low-level system information for the Intel MCU System
V ABI.

2.1 Machine Interface
The Intel MCU processor architecture and data representation are covered in this
section.

2.1.1 Data Representation
Within this specification, the term byte refers to a 8-bit object, the term twobyte
refers to a 16-bit object, the term fourbyte refers to a 32-bit object, the term eight-
byte refers to a 64-bit object, and the term sixteenbyte refers to a 128-bit object.1

Fundamental Types

Table 2.1 shows the correspondence between ISO C scalar types and the processor
scalar types. __float80, __float128, _Decimal32, _Decimal64, and
_Decimal128 types are optional.

The 128-bit floating-point type uses a 15-bit exponent, a 113-bit mantissa (the
high order significant bit is implicit) and an exponent bias of 16383.

1The Intel386 ABI uses the term halfword for a 16-bit object, the term word for a 32-bit object,
the term doubleword for a 64-bit object. But most IA-32 processor specific documentation define
a word as a 16-bit object, a doubleword as a 32-bit object, a quadword as a 64-bit object and a
double quadword as a 128-bit object.

8

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Table 2.1: Scalar Types
Alignment Intel MCU

Type C sizeof (bytes) Architecture
_Bool† 1 1 boolean
char 1 1 signed byte
signed char
unsigned char 1 1 unsigned byte
short 2 2 signed twobyte
signed short
unsigned short 2 2 unsigned twobyte
int 4 4 signed fourbyte

Integral signed int
enum†††

unsigned int 4 4 unsigned fourbyte
long 4 4 signed fourbyte
signed long
unsigned long 4 4 unsigned fourbyte
long long 8 4 signed eightbyte
signed long long
unsigned long long 8 4 unsigned eightbyte

Pointer any-type * 4 4 unsigned fourbyte
any-type (*)()

Floating- float 4 4 single (IEEE-754)
point double 8 4 double (IEEE-754)

long double
__float80†† 12 4 80-bit extended (IEEE-754)
__float128†† 16 4 128-bit extended (IEEE-754)

Complex _Complex float 8 4 complex single (IEEE-754)
Floating- _Complex double 16 4 complex double (IEEE-754)
point _Complex long double

_Complex __float80†† 24 4 complex 80-bit extended (IEEE-754)
_Complex __float128†† 32 4 complex 128-bit extended (IEEE-754)

Decimal- _Decimal32 4 4 32bit BID (IEEE-754R)
floating- _Decimal64 8 4 64bit BID (IEEE-754R)
point _Decimal128 16 4 128bit BID (IEEE-754R)
† This type is called bool in C++.
†† These types are optional.
††† C++ and some implementations of C permit enums larger than an int. The underlying
type is bumped to an unsigned int.

9

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

The 80-bit floating-point type uses a 15 bit exponent, a 64-bit mantissa with
an explicit high order significant bit and an exponent bias of 16383.2

A null pointer (for all types) has the value zero.
The type size_t is defined as unsigned int.
Booleans, when stored in a memory object, are stored as single byte objects the

value of which is always 0 (false) or 1 (true). When stored in integer registers
(except for passing as arguments), all 4 bytes of the register are significant; any
nonzero value is considered true.

The Intel MCU architecture in general does not require all data accesses to be
properly aligned. Misaligned data accesses may be slower than aligned accesses
but otherwise behave identically.

Structures and Unions

Structures and unions assume the alignment of their most strictly aligned compo-
nent. Each member is assigned to the lowest available offset with the appropriate
alignment. The size of any object is always a multiple of the object‘s alignment.

Structure and union objects can require padding to meet size and alignment
constraints. The contents of any padding is undefined.

Short Aggregates Short aggregate types (structs and unions) are aggre-
gate types no larger than 8 bytes.

2.2 Function Calling Sequence
This section describes the standard function calling sequence, including stack
frame layout, register usage, parameter passing and so on.

The standard calling sequence requirements apply only to global functions.
Local functions that are not reachable from other compilation units may use dif-
ferent conventions. Nevertheless, it is recommended that all functions use the
standard calling sequence when possible.

2.2.1 Registers
The Intel MCU architecture provides 8 general purpose 32-bit registers. All reg-
isters are global to all procedures active for a given thread.

2This type is the same as the x87 double extended precision data type.

10

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Table 2.2: Stack Frame with Base Pointer

Position Contents Frame
4n+8(%ebp) memory argument fourbyte n

. . . Previous
8(%ebp) memory argument fourbyte 0
4(%ebp) return address
0(%ebp) previous %ebp value
-4(%ebp) unspecified Current

. . .
0(%esp) variable size

The direction flag DF in the %EFLAGS register must be clear (set to “forward”
direction) on function entry and return. Other user flags have no specified role in
the standard calling sequence and are not preserved across calls.

2.2.2 The Stack Frame
In addition to registers, each function has a frame on the run-time stack. This stack
grows downwards from high addresses. Table 2.2 shows the stack organization.

The end of the input argument area shall be aligned on a 4 byte boundary.
In other words, the value (%esp + 4) is always a multiple of 4 when control is
transferred to the function entry point. The stack pointer, %esp, always points to
the end of the latest allocated stack frame. 3

2.2.3 Parameter Passing and Returning Values
After the argument values have been computed, they are placed either in registers
or pushed on the stack.

3The conventional use of %ebp as a frame pointer for the stack frame may be avoided by using
%esp (the stack pointer) to index into the stack frame. This technique saves two instructions in
the prologue and epilogue and makes one additional general-purpose register (%ebp) available.

11

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Passing Parameters

The first three parameters of scalar types no larger than 8 bytes or short aggregate
types (structs and unions) are passed in %eax4, %edx, and %ecx5. The
rest of parameters are passed on the stack. Parameters are pushed onto the stack
in reverse order - the last argument in the parameter list has the highest address,
that is, it is stored farthest away from the stack pointer at the time of the call.

Padding may be needed to increase the size of each parameter to enforce align-
ment according to the values in Table 2.1. Additional padding may be necessary
to ensure that the bottom of the parameter block (closest to the stack pointer) is at
an address which is 0 mod 4, to guarantee proper alignment to the callee.

Returning Values

Table 2.4 lists the location used to return a value for each fundamental data type.
Aggregate types (structs and unions) are returned as follows:

• Short aggregate types no larger than 8 bytes are returned in %edx:%eax.
The most significant 32 bits are returned in %edx. The least significant 32
bits are returned in %eax.

• Other aggregate types are returned in memory.

Returning Values in Memory

Some fundamental types and all aggregate types are returned in memory. For
functions that return a value in memory, the caller passes a pointer to the memory
location where the called function must write the return value. This pointer is
passed to called function as an implicit first argument. The memory location must
be properly aligned according to the rules in section 2.1.1.

As an example of the register passing conventions, consider the declarations
and the function call shown in Table 2.5. The corresponding register allocation
is given in Table 2.6, the stack frame layout given in Table 2.7 shows the frame
before calling the function.

4If %eax is used to return a value in memory, only %edx and %ecx are available to pass
parameters.

5A parameter is passed in registers only if the whole parameter can fit into the available regis-
ters.

12

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Table 2.3: Register Usage

Preserved across
Register Usage function calls
%eax scratch register; used to pass 1st argument to func-

tions; also used to return 32-bit scalar and short
aggregate values from functions; also stores the
address of a returned struct or union

No

%ebx callee-saved register; also used to hold the GOT
pointer when making function calls via the PLT

Yes

%ecx scratch register; used to pass 3rd argument to
functions;

No

%edx scratch register; used to pass 2nd argument to
functions; also used to return the upper 32bits of
some 64bit return types

No

%esp stack pointer Yes
%ebp callee-saved register; optionally used as frame

pointer
Yes

%esi callee-saved register yes
%edi callee-saved register yes
%gs Reserved for system (as thread specific data reg-

ister) †
No

† Segment register is optional.

13

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Table 2.4: Return Value Locations for Fundamental Data Types
Type C Return Value Location

_Bool %al
char The upper 24 bits of %eax are undefined. The caller must not
signed char rely on these being set in a predefined way by the called
unsigned char function.
short %ax
signed short The upper 16 bits of %eax are undefined. The caller must not
unsigned short rely on these being set in a predefined way by the called function.
int %eax

Integral signed int
enum
unsigned int
long
signed long
unsigned long
long long %edx:%eax
signed long long The most significant 32 bits are returned in %edx. The least
unsigned long long significant 32 bits are returned in %eax.

Pointer any-type * %eax
any-type (*)()
float %eax

Floating- double %edx:%eax
point long double The most significant 32 bits are returned in %edx. The least

significant 32 bits are returned in %eax.
__float80 memory
__float128 memory
_Complex float %edx:%eax

The real part is returned in %eax. The imaginary part is returned
Complex in %edx.
floating- _Complex double memory
point _Complex long double memory

_Complex __float80 memory
_Complex __float128 memory
_Decimal32 %eax

Decimal- _Decimal64 %edx:%eax
floating- The most significant 32 bits are returned in %edx. The least
point significant 32 bits are returned in %eax.

_Decimal128 memory

14

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Table 2.5: Parameter Passing Example

typedef struct {
char a, b;
short d;

} structparm;
structparm s;
int i;
float f; double d;
extern void func (int i, float f, double d,

structparm s);

func (i, f, d, s);

Table 2.6: Register Allocation for Parameter Passing Example

General Purpose Registers Stack Frame Offset
%eax: i 0: d
%edx: f
%ecx: s

Table 2.7: Stack Layout at the Call

Contents Length
d 8 bytes ←− %esp (4-byte aligned)

When a value of type _Bool is returned or passed in a register or on the stack,
bit 0 contains the truth value and bits 1 to 7 shall be zero6.

6Other bits are left unspecified, hence the consumer side of those values can rely on it being 0
or 1 when truncated to 8 bit.

15

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

2.2.4 Variable Argument Lists
Some otherwise portable C programs depend on the argument passing scheme,
implicitly assuming that all arguments are passed on the stack, and arguments
appear in increasing order on the stack. Programs that make these assumptions
never have been portable, but they have worked on many implementations. How-
ever, they do not work on the Intel MCU architecture because some arguments are
passed in registers. Portable C programs must use the header file <stdarg.h>
in order to handle variable argument lists.

When a function taking variable-arguments is called, all parameters are passed
on the stack. This rule applies to both named and unnamed parameters. Because
parameters are passed differently depending on whether or not the called function
takes a variable argument list, it is necessary for such functions to be properly
prototyped. Failure to do so results in undefined behavior.

2.3 Process Initialization

2.3.1 Initial Stack and Register State
Special Registers

The EFLAGS register contains the system flags, such as the direction flag and the
carry flag. The low 16 bits (FLAGS portion) of EFLAGS are accessible by appli-
cation software. The state of them at process initialization is shown in table 2.8.

Table 2.8: EFLAGS Bits

Field Value Note
DF 0 Direction forward
CF 0 No carry
PF 0 Even parity
AF 0 No auxiliary carry
ZF 0 No zero result
SF 0 Unsigned result
OF 0 No overflow occurred

16

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Stack State

This section describes the machine state that exec (BA_OS) creates for new
processes. Various language implementations transform this initial program state
to the state required by the language standard.

For example, a C program begins executing at a function named main de-
clared as:

extern int main (int argc , char *argv[] , char* envp[]);

where

argc is a non-negative argument count

argv is an array of argument strings, with argv[argc] == 0

envp is an array of environment strings, terminated by a null pointer.

When main() returns its value is passed to exit() and if that has been
over-ridden and returns, _exit() (which must be immune to user interposition).

The initial state of the process stack, i.e. when _start is called is shown in
table 2.9.

Table 2.9: Initial Process Stack

Purpose Start Address Length
Unspecified High Addresses
Information block, including argu-
ment strings, environment strings,
auxiliary information ...

varies

Unspecified
Null auxiliary vector entry 1 fourbyte
Auxiliary vector entries ... 2 fourbytes each
0 fourbyte
Environment pointers ... 1 fourbyte each
0 4+4*argc+%esp fourbyte
Argument pointers 4+%esp argc fourbytes
Argument count %esp fourbyte
Undefined Low Addresses

17

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Argument strings, environment strings, and the auxiliary information appear
in no specific order within the information block and they need not be compactly
allocated.

Only the registers listed below have specified values at process entry:

%ebp The content of this register is unspecified at process initialization time,
but the user code should mark the deepest stack frame by setting the frame
pointer to zero.

%esp The stack pointer holds the address of the byte with lowest address which
is part of the stack. It is guaranteed to be 4-byte aligned at process entry.

It is unspecified whether the data and stack segments are initially mapped with
execute permissions or not. Applications which need to execute code on the stack
or data segments should take proper precautions, e.g., by calling mprotect().

2.3.2 Auxiliary Vector
The auxiliary vector7 is an array of the following structures (ref. table 2.10),
interpreted according to the a_type member.

Table 2.10: auxv_t Type Definition

typedef struct
{

int a_type;
union {

long a_val;
void *a_ptr;
void (*a_fnc)();

} a_un;
} auxv_t;

The Intel MCU ABI uses the auxiliary vector types defined in table 2.11.

7The auxiliary vector support is optional.

18

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Table 2.11: Auxiliary Vector Types

Name Value a_un
AT_NULL 0 ignored
AT_IGNORE 1 ignored
AT_EXECFD 2 a_val
AT_PHDR 3 a_ptr
AT_PHENT 4 a_val
AT_PHNUM 5 a_val
AT_PAGESZ 6 a_val
AT_BASE 7 a_ptr
AT_FLAGS 8 a_val
AT_ENTRY 9 a_ptr
AT_NOTELF 10 a_val
AT_UID 11 a_val
AT_EUID 12 a_val
AT_GID 13 a_val
AT_EGID 14 a_val
AT_PLATFORM 15 a_ptr
AT_HWCAP 16 a_val
AT_CLKTCK 17 a_val
AT_SECURE 23 a_val
AT_BASE_PLATFORM 24 a_ptr
AT_RANDOM 25 a_ptr
AT_HWCAP2 26 a_val
AT_EXECFN 31 a_ptr

AT_NULL The auxiliary vector has no fixed length; instead its last entry’s a_type
member has this value.

AT_IGNORE This type indicates the entry has no meaning. The corresponding
value of a_un is undefined.

AT_EXECFD At process creation the system may pass control to an interpreter
program. When this happens, the system places either an entry of type
AT_EXECFD or one of type AT_PHDR in the auxiliary vector. The entry

19

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

for type AT_EXECFD uses the a_val member to contain a file descriptor
open to read the application program’s object file.

AT_PHDR The system may create the memory image of the application program
before passing control to the interpreter program. When this happens, the
a_ptr member of the AT_PHDR entry tells the interpreter where to find
the program header table in the memory image.

AT_PHENT The a_val member of this entry holds the size, in bytes, of one
entry in the program header table to which the AT_PHDR entry points.

AT_PHNUM The a_val member of this entry holds the number of entries in
the program header table to which the AT_PHDR entry points.

AT_PAGESZ If present, this entry’s a_val member gives the system page size,
in bytes.

AT_BASE The a_ptr member of this entry holds the base address at which the
interpreter program was loaded into memory. See “Program Header” in the
System V ABI for more information about the base address.

AT_FLAGS If present, the a_val member of this entry holds one-bit flags. Bits
with undefined semantics are set to zero.

AT_ENTRY The a_ptr member of this entry holds the entry point of the appli-
cation program to which the interpreter program should transfer control.

AT_NOTELF The a_val member of this entry is non-zero if the program is in
another format than ELF.

AT_UID The a_val member of this entry holds the real user id of the process.

AT_EUID The a_val member of this entry holds the effective user id of the
process.

AT_GID The a_val member of this entry holds the real group id of the process.

AT_EGID The a_val member of this entry holds the effective group id of the
process.

AT_PLATFORM The a_ptr member of this entry points to a string containing
the platform name.

20

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

AT_HWCAP The a_val member of this entry contains an bitmask of CPU
features. It mask to the value returned by CPUID 1.EDX.

AT_CLKTCK The a_valmember of this entry contains the frequency at which
times() increments.

AT_SECURE The a_val member of this entry contains one if the program is
in secure mode (for example started with suid). Otherwise zero.

AT_BASE_PLATFORM The a_ptr member of this entry points to a string
identifying the base architecture platform (which may be different from the
platform).

AT_RANDOM The a_ptrmember of this entry points to 16 securely generated
random bytes.

AT_HWCAP2 The a_valmember of this entry contains the extended hardware
feature mask. Currently it is 0, but may contain additional feature bits in the
future.

AT_EXECFN The a_ptr member of this entry is a pointer to the file name of
the executed program.

2.4 DWARF Definition
This section8 defines the Debug With Arbitrary Record Format (DWARF) debug-
ging format for the Intel MCU processor family. The Intel MCU ABI does not
define a debug format. However, all systems that do implement DWARF on Intel
MCU shall use the following definitions.

DWARF is a specification developed for symbolic, source-level debugging.
The debugging information format does not favor the design of any compiler or
debugger. For more information on DWARF, see DWARF Debugging Format
Standard, available at: http://www.dwarfstd.org/.

2.4.1 DWARF Release Number
The DWARF definition requires some machine-specific definitions. The register
number mapping needs to be specified for the Intel MCU registers. In addition,

8This section is structured in a way similar to the PowerPC psABI

21

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

http://www.dwarfstd.org/

Table 2.12: DWARF Register Number Mapping

Register Name Number Abbreviation
General Purpose Register EAX 0 %eax
General Purpose Register ECX 1 %ecx
General Purpose Register EDX 2 %edx
General Purpose Register EBX 3 %ebx
Stack Pointer Register ESP 4 %esp
Frame Pointer Register EBP 5 %ebp
General Purpose Register ESI 6 %esi
General Purpose Register EDI 7 %edi
Return Address RA 8
Flag Register 9 %EFLAGS
Reserved 10-39
Segment Register ES 40 %es
Segment Register CS 41 %cs
Segment Register SS 42 %ss
Segment Register DS 43 %ds
Segment Register FS 44 %fs
Segment Register GS 45 %gs
Reserved 46-47
Task Register 48 %tr
LDT Register 49 %ldtr
Reserved 50-100

starting with version 3 the DWARF specification requires processor-specific ad-
dress class codes to be defined.

2.4.2 DWARF Register Number Mapping
Table 2.129 outlines the register number mapping for the Intel MCU processor
family.10

9The table defines Return Address to have a register number, even though the address is stored
in 0(%esp) and not in a physical register.

10This document does not define mappings for privileged registers.

22

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

2.5 Stack Unwind Algorithm
The stack frames are not self descriptive and where stack unwinding is desirable
(such as for exception handling) additional unwind information needs to be gen-
erated. The information is stored in an allocatable section .eh_frame whose
format is identical to .debug_frame defined by the DWARF debug informa-
tion standard, see DWARF Debugging Information Format, with the following
extensions:

Position independence In order to avoid load time relocations for position inde-
pendent code, the FDE CIE offset pointer should be stored relative to the
start of CIE table entry. Frames using this extension of the DWARF stan-
dard must set the CIE identifier tag to 1.

Outgoing arguments area delta To maintain the size of the temporarily allo-
cated outgoing arguments area present on the end of the stack (when us-
ing push instructions), operation GNU_ARGS_SIZE (0x2e) can be used.
This operation takes a single uleb128 argument specifying the current
size. This information is used to adjust the stack frame when jumping into
the exception handler of the function after unwinding the stack frame. Ad-
ditionally the CIE Augmentation shall contain an exact specification of the
encoding used. It is recommended to use a PC relative encoding whenever
possible and adjust the size according to the code model used.

CIE Augmentations: The augmentation field is formated according to the aug-
mentation field formating string stored in the CIE header.

The string may contain the following characters:

z Indicates that a uleb128 is present determining the size of the augmen-
tation section.

L Indicates the encoding (and thus presence) of an LSDA pointer in the
FDE augmentation.
The data filed consist of single byte specifying the way pointers are
encoded. It is a mask of the values specified by the table 2.13.
The default DWARF pointer encoding (direct 4-byte absolute pointers)
is represented by value 0.

23

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Table 2.13: Pointer Encoding Specification Byte

Mask Meaning
0x1 Values are stored as uleb128 or sleb128 type (according to flag 0x8)
0x2 Values are stored as 2 bytes wide integers (udata2 or sdata2)
0x3 Values are stored as 4 bytes wide integers (udata4 or sdata4)
0x4 Values are stored as 8 bytes wide integers (udata8 or sdata8)
0x8 Values are signed

0x10 Values are PC relative
0x20 Values are text section relative
0x30 Values are data section relative
0x40 Values are relative to the start of function

R Indicates a non-default pointer encoding for FDE code pointers. The
formating is represented by a single byte in the same way as in the ‘L’
command.

P Indicates the presence and an encoding of a language personality routine
in the CIE augmentation. The encoding is represented by a single byte
in the same way as in the ’L’ command followed by a pointer to the
personality function encoded by the specified encoding.

When the augmentation is present, the first command must always be ‘z’ to
allow easy skipping of the information.

In order to simplify manipulation of the unwind tables, the runtime library pro-
vide higher level API to stack unwinding mechanism, for details see section 4.1.

24

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Chapter 3

Object Files

3.1 ELF Header

3.1.1 Machine Information
File Class

For Intel MCU objects, the file class value in e_ident[EI_CLASS] must be
ELFCLASS32.

Data Encoding

For the data encoding in e_ident[EI_DATA], Intel MCU objects use ELFDATA2LSB.

Processor identification

Processor identification resides in the ELF headers e_machine member and
must have the value EM_IAMCU1.

3.1.2 Number of Program Headers
The e_phnum member contains the number of entries in the program header
table. The product of e_phentsize and e_phnum gives the table’s size in
bytes. If a file has no program header table, e_phnum holds the value zero.

1The value of this identifier is 6, which was used by EM_486 before.

25

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

If the number of program headers is greater than or equal to PN_XNUM (0xffff),
this member has the value PN_XNUM (0xffff). The actual number of program
header table entries is contained in the sh_info field of the section header at
index 0. Otherwise, the sh_info member of the initial entry contains the value
zero.

3.2 Sections

3.2.1 Special Sections

Table 3.1: Special sections

Name Type Attributes
.eh_frame SHT_PROGBITS SHF_ALLOC

.eh_frame This section holds the unwind function table. The contents are de-
scribed in Section 3.2.2 of this document.

3.2.2 EH_FRAME sections
The call frame information needed for unwinding the stack is output into one sec-
tion named .eh_frame. An .eh_frame section consists of one or more sub-
sections. Each subsection contains a CIE (Common Information Entry) followed
by varying number of FDEs (Frame Descriptor Entry). A FDE corresponds to an
explicit or compiler generated function in a compilation unit, all FDEs can access
the CIE that begins their subsection for data. If the code for a function is not one
contiguous block, there will be a separate FDE for each contiguous sub-piece.

If an object file contains C++ template instantiations there shall be a separate
CIE immediately preceding each FDE corresponding to an instantiation.

Using the preferred encoding specified below, the .eh_frame section can be
entirely resolved at link time and thus can become part of the text segment.

EH_PE encoding below refers to the pointer encoding as specified in the en-
hanced LSB Chapter 7 for Eh_Frame_Hdr.

26

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Table 3.2: Common Information Entry (CIE)

Field Length (byte) Description
Length 4 Length of the CIE (not including this 4-

byte field)
CIE id 4 Value 0 for .eh_frame (used to distin-

guish CIEs and FDEs when scanning the
section)

Version 1 Value One (1)
CIE Augmenta-
tion String

string Null-terminated string with legal values
being "" or ’z’ optionally followed by sin-
gle occurrances of ’P’, ’L’, or ’R’ in any
order. The presence of character(s) in the
string dictates the content of field 8, the
Augmentation Section. Each character has
one or two associated operands in the AS
(see table 3.3 for which ones). Operand
order depends on position in the string (’z’
must be first).

Code Align Fac-
tor

uleb128 To be multiplied with the "Advance Lo-
cation" instructions in the Call Frame In-
structions

Data Align Fac-
tor

sleb128 To be multiplied with all offsets in the Call
Frame Instructions

Ret Address Reg 1/uleb128 A "virtual" register representation of the
return address. In Dwarf V2, this is a byte,
otherwise it is uleb128. It is a byte in gcc
3.3.x

Optional CIE
Augmentation
Section

varying Present if Augmentation String in Aug-
mentation Section field 4 is not 0. See ta-
ble 3.3 for the content.

Optional Call
Frame Instruc-
tions

varying

27

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Table 3.3: CIE Augmentation Section Content

Char Operands Length (byte) Description
z size uleb128 Length of the remainder of the Augmen-

tation Section
P personality_enc 1 Encoding specifier - preferred value is a

pc-relative, signed 4-byte
personality
routine

(encoded) Encoded pointer to personality routine
(actually to the PLT entry for the per-
sonality routine)

R code_enc 1 Non-default encoding for the
code-pointers (FDE members
initial_location and
address_range and the operand for
DW_CFA_set_loc) - preferred value
is pc-relative, signed 4-byte

L lsda_enc 1 FDE augmentation bodies may contain
LSDA pointers. If so they are encoded
as specified here - preferred value is pc-
relative, signed 4-byte possibly indirect
thru a GOT entry

28

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Table 3.4: Frame Descriptor Entry (FDE)

Field Length (byte) Description
Length 4 Length of the FDE (not including this 4-

byte field)
CIE pointer 4 Distance from this field to the nearest pre-

ceding CIE (the value is subtracted from
the current address). This value can never
be zero and thus can be used to distin-
guish CIE’s and FDE’s when scanning the
.eh_frame section

Initial Location var Reference to the function code correspond-
ing to this FDE. If ’R’ is missing from
the CIE Augmentation String, the field is
an 8-byte absolute pointer. Otherwise, the
corresponding EH_PE encoding in the CIE
Augmentation Section is used to interpret
the reference

Address Range var Size of the function code corresponding to
this FDE. If ’R’ is missing from the CIE
Augmentation String, the field is an 8-byte
unsigned number. Otherwise, the size is
determined by the corresponding EH_PE
encoding in the CIE Augmentation Section
(the value is always absolute)

Optional FDE
Augmentation
Section

var Present if CIE Augmentation String is non-
empty. See table 3.5 for the content.

Optional Call
Frame Instruc-
tions

var

29

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Table 3.5: FDE Augmentation Section Content

Char Operands Length (byte) Description
z length uleb128 Length of the remainder of the Augmen-

tation Section
L LSDA var LSDA pointer, encoded in the format

specified by the corresponding operand
in the CIE’s augmentation body. (only
present if length > 0).

The existence and size of the optional call frame instruction area must be com-
puted based on the overall size and the offset reached while scanning the preceding
fields of the CIE or FDE.

The overall size of a .eh_frame section is given in the ELF section header.
The only way to determine the number of entries is to scan the section until the
end, counting entries as they are encountered.

3.3 Symbol Table
The STT_GNU_IFUNC 2 symbol type is optional. It is the same as STT_FUNC
except that it always points to a function or piece of executable code which takes
no arguments and returns a function pointer. If an STT_GNU_IFUNC symbol
is referred to by a relocation, then evaluation of that relocation is delayed until
load-time. The value used in the relocation is the function pointer returned by an
invocation of the STT_GNU_IFUNC symbol.

The purpose of the STT_GNU_IFUNC symbol type is to allow the run-time to
select between multiple versions of the implementation of a specific function. The
selection made in general will take the currently available hardware into account
and select the most appropriate version.

2It is specified in ifunc.txt at http://sites.google.com/site/x32abi/
documents

30

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

http://sites.google.com/site/x32abi/documents
http://sites.google.com/site/x32abi/documents

3.4 Relocation

3.4.1 Relocation Types
Figure 3.4.1 shows the allowed relocatable fields.

Figure 3.1: Relocatable Fields

7 word8 0

15 word16 0

31 word32 0

word8 This specifies a 8-bit field occupying 1 byte.
word16 This specifies a 16-bit field occupying 2 bytes with arbitrary

byte alignment. These values use the same byte order as
other word values in the Intel MCU architecture.

word32 This specifies a 32-bit field occupying 4 bytes with arbitrary
byte alignment. These values use the same byte order as
other word values in the Intel MCU architecture.

The following notations are used for specifying relocations in table 3.6:

A Represents the addend used to compute the value of the relocatable field.

B Represents the base address at which a shared object has been loaded into mem-
ory during execution. Generally, a shared object is built with a 0 base virtual
address, but the execution address will be different.

31

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

G Represents the offset into the global offset table at which the relocation entry’s
symbol will reside during execution.

GOT Represents the address of the global offset table.

L Represents the place (section offset or address) of the Procedure Linkage Table
entry for a symbol.

P Represents the place (section offset or address) of the storage unit being relo-
cated (computed using r_offset).

S Represents the value of the symbol whose index resides in the relocation entry.

Z Represents the size of the symbol whose index resides in the relocation entry.

32

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Table 3.6: Relocation Types

Name Value Field Calculation
R_386_NONE 0 none none
R_386_32 1 word32 S + A
R_386_PC32 2 word32 S + A - P
R_386_GOT32 3 word32 G + A - GOT
R_386_PLT32 4 word32 L + A - P
R_386_COPY 5 none none
R_386_GLOB_DAT 6 word32 S
R_386_JUMP_SLOT 7 word32 S
R_386_RELATIVE 8 word32 B + A
R_386_GOTOFF 9 word32 S + A - GOT
R_386_GOTPC 10 word32 GOT + A - P
R_386_TLS_TPOFF 14 word32
R_386_TLS_IE 15 word32
R_386_TLS_GOTIE 16 word32
R_386_TLS_LE 17 word32
R_386_TLS_GD 18 word32
R_386_TLS_LDM 19 word32
R_386_16 20 word16 S + A
R_386_PC16 21 word16 S + A - P
R_386_8 22 word8 S + A
R_386_PC8 23 word8 S + A - P
R_386_TLS_GD_32 24 word32
R_386_TLS_GD_PUSH 25 word32
R_386_TLS_GD_CALL 26 word32
R_386_TLS_GD_POP 27 word32
R_386_TLS_LDM_32 28 word32
R_386_TLS_LDM_PUSH 29 word32
R_386_TLS_LDM_CALL 30 word32
R_386_TLS_LDM_POP 31 word32
R_386_TLS_LDO_32 32 word32
R_386_TLS_IE_32 33 word32
R_386_TLS_LE_32 34 word32
R_386_TLS_DTPMOD32 35 word32
R_386_TLS_DTPOFF32 36 word32
R_386_TLS_TPOFF32 37 word32
R_386_SIZE32 38 word32 Z + A
R_386_TLS_GOTDESC 39 word32
R_386_TLS_DESC_CALL 40 none none
R_386_TLS_DESC 41 word32
R_386_IRELATIVE 42 word32 indirect (B + A)

A program or object file using R_386_8, R_386_16, R_386_PC16 or
R_386_PC8 relocations is not conformant to this ABI, these relocations are only
added for documentation purposes. The R_386_16, and R_386_8 relocations
truncate the computed value to 16-bits and 8-bits respectively.

33

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

The relocations R_386_TLS_TPOFF, R_386_TLS_IE,
R_386_TLS_GOTIE, R_386_TLS_LE, R_386_TLS_GD,
R_386_TLS_LDM, R_386_TLS_GD_32, R_386_TLS_GD_PUSH,
R_386_TLS_GD_CALL, R_386_TLS_GD_POP, R_386_TLS_LDM_32,
R_386_TLS_LDM_PUSH, R_386_TLS_LDM_CALL,
R_386_TLS_LDM_POP, R_386_TLS_LDO_32, R_386_TLS_IE_32,
R_386_TLS_LE_32, R_386_TLS_DTPMOD32, R_386_TLS_DTPOFF32
and R_386_TLS_TPOFF32 are listed for completeness3. They are part of
the Thread-Local Storage ABI extensions and are documented in the doc-
ument called “ELF Handling for Thread-Local Storage”4. The relocations
R_386_TLS_GOTDESC, R_386_TLS_DESC_CALL and R_386_TLS_DESC
are also used for Thread-Local Storage, but are not documented there as of this
writing. A description can be found in the document “Thread-Local Storage
Descriptors for IA32 and AMD64/EM64T”5.

R_386_IRELATIVE is similar to R_386_RELATIVE except that the value
used in this relocation is the program address returned by the function, which takes
no arguments, at the address of the result of the corresponding R_386_RELATIVE
relocation.

One use of the R_386_IRELATIVE relocation is to avoid name lookup for
the locally defined STT_GNU_IFUNC symbols at load-time. Support for this
relocation is optional, but is required for the STT_GNU_IFUNC symbols.

3The relocations for Thread-Local Storage are optional, which depend on the optional segment
register %gs.

4This document is currently available via http://www.akkadia.org/drepper/tls.
pdf

5This document is currently available via http://www.fsfla.org/~lxoliva/
writeups/TLS/RFC-TLSDESC-x86.txt

34

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

http://www.akkadia.org/drepper/tls.pdf
http://www.akkadia.org/drepper/tls.pdf
http://www.fsfla.org/~lxoliva/writeups/TLS/RFC-TLSDESC-x86.txt
http://www.fsfla.org/~lxoliva/writeups/TLS/RFC-TLSDESC-x86.txt

Chapter 4

Libraries

4.1 Unwind Library Interface
This section defines the Unwind Library interface1, expected to be provided by
any Intel MCU psABI-compliant system. This is the interface on which the C++
ABI exception-handling facilities are built. We assume as a basis the Call Frame
Information tables described in the DWARF Debugging Information Format doc-
ument.

This section is meant to specify a language-independent interface that can be
used to provide higher level exception-handling facilities such as those defined by
C++.

The unwind library interface consists of at least the following routines:
_Unwind_RaiseException ,
_Unwind_Resume ,
_Unwind_DeleteException ,
_Unwind_GetGR ,
_Unwind_SetGR ,
_Unwind_GetIP ,
_Unwind_SetIP ,
_Unwind_GetRegionStart ,
_Unwind_GetLanguageSpecificData ,
_Unwind_ForcedUnwind ,
_Unwind_GetCFA

1The overall structure and the external interface is derived from the IA-64 UNIX System V
ABI

35

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

In addition, two data types are defined (_Unwind_Context and
_Unwind_Exception) to interface a calling runtime (such as the C++ run-
time) and the above routine. All routines and interfaces behave as if defined
extern "C". In particular, the names are not mangled. All names defined
as part of this interface have a "_Unwind_" prefix.

Lastly, a language and vendor specific personality routine will be stored by
the compiler in the unwind descriptor for the stack frames requiring exception
processing. The personality routine is called by the unwinder to handle language-
specific tasks such as identifying the frame handling a particular exception.

4.1.1 Exception Handler Framework
Reasons for Unwinding

There are two major reasons for unwinding the stack:

• exceptions, as defined by languages that support them (such as C++)

• “forced” unwinding (such as caused by longjmp or thread termination)

The interface described here tries to keep both similar. There is a major dif-
ference, however.

• In the case where an exception is thrown, the stack is unwound while the
exception propagates, but it is expected that the personality routine for each
stack frame knows whether it wants to catch the exception or pass it through.
This choice is thus delegated to the personality routine, which is expected to
act properly for any type of exception, whether “native” or “foreign”. Some
guidelines for “acting properly” are given below.

• During “forced unwinding”, on the other hand, an external agent is driving
the unwinding. For instance, this can be the longjmp routine. This exter-
nal agent, not each personality routine, knows when to stop unwinding. The
fact that a personality routine is not given a choice about whether unwinding
will proceed is indicated by the _UA_FORCE_UNWIND flag.

To accommodate these differences, two different routines are proposed.
_Unwind_RaiseException performs exception-style unwinding, under
control of the personality routines. _Unwind_ForcedUnwind , on the other
hand, performs unwinding, but gives an external agent the opportunity to intercept

36

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

calls to the personality routine. This is done using a proxy personality routine, that
intercepts calls to the personality routine, letting the external agent override the
defaults of the stack frame’s personality routine.

As a consequence, it is not necessary for each personality routine to know
about any of the possible external agents that may cause an unwind. For instance,
the C++ personality routine need deal only with C++ exceptions (and possibly
disguising foreign exceptions), but it does not need to know anything specific
about unwinding done on behalf of longjmp or pthreads cancellation.

The Unwind Process

The standard ABI exception handling/unwind process begins with the raising of an
exception, in one of the forms mentioned above. This call specifies an exception
object and an exception class.

The runtime framework then starts a two-phase process:

• In the search phase, the framework repeatedly calls the personality routine,
with the _UA_SEARCH_PHASE flag as described below, first for the cur-
rent %eip and register state, and then unwinding a frame to a new %eip
at each step, until the personality routine reports either success (a handler
found in the queried frame) or failure (no handler) in all frames. It does not
actually restore the unwound state, and the personality routine must access
the state through the API.

• If the search phase reports a failure, e.g. because no handler was found, it
will call terminate() rather than commence phase 2.

If the search phase reports success, the framework restarts in the cleanup
phase. Again, it repeatedly calls the personality routine, with the
_UA_CLEANUP_PHASE flag as described below, first for the current
%eip and register state, and then unwinding a frame to a new %eip at
each step, until it gets to the frame with an identified handler. At that point,
it restores the register state, and control is transferred to the user landing
pad code.

Each of these two phases uses both the unwind library and the personality
routines, since the validity of a given handler and the mechanism for transferring
control to it are language-dependent, but the method of locating and restoring
previous stack frames is language-independent.

37

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

A two-phase exception-handling model is not strictly necessary to implement
C++ language semantics, but it does provide some benefits. For example, the first
phase allows an exception-handling mechanism to dismiss an exception before
stack unwinding begins, which allows presumptive exception handling (correcting
the exceptional condition and resuming execution at the point where it was raised).
While C++ does not support presumptive exception handling, other languages do,
and the two-phase model allows C++ to coexist with those languages on the stack.

Note that even with a two-phase model, we may execute each of the two phases
more than once for a single exception, as if the exception was being thrown more
than once. For instance, since it is not possible to determine if a given catch clause
will re-throw or not without executing it, the exception propagation effectively
stops at each catch clause, and if it needs to restart, restarts at phase 1. This
process is not needed for destructors (cleanup code), so the phase 1 can safely
process all destructor-only frames at once and stop at the next enclosing catch
clause.

For example, if the first two frames unwound contain only cleanup code, and
the third frame contains a C++ catch clause, the personality routine in phase 1,
does not indicate that it found a handler for the first two frames. It must do so for
the third frame, because it is unknown how the exception will propagate out of
this third frame, e.g. by re-throwing the exception or throwing a new one in C++.

The API specified by the Intel MCU psABI for implementing this framework
is described in the following sections.

4.1.2 Data Structures
Reason Codes

The unwind interface uses reason codes in several contexts to identify the reasons
for failures or other actions, defined as follows:

38

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

typedef enum {
_URC_NO_REASON = 0,
_URC_FOREIGN_EXCEPTION_CAUGHT = 1,
_URC_FATAL_PHASE2_ERROR = 2,
_URC_FATAL_PHASE1_ERROR = 3,
_URC_NORMAL_STOP = 4,
_URC_END_OF_STACK = 5,
_URC_HANDLER_FOUND = 6,
_URC_INSTALL_CONTEXT = 7,
_URC_CONTINUE_UNWIND = 8

} _Unwind_Reason_Code;
The interpretations of these codes are described below.

Exception Header

The unwind interface uses a pointer to an exception header object as its repre-
sentation of an exception being thrown. In general, the full representation of an
exception object is language- and implementation-specific, but is prefixed by a
header understood by the unwind interface, defined as follows:

typedef void (*_Unwind_Exception_Cleanup_Fn)
(_Unwind_Reason_Code reason,
struct _Unwind_Exception *exc);

struct _Unwind_Exception {
uint64 exception_class;
_Unwind_Exception_Cleanup_Fn exception_cleanup;
uint32 private_1;
uint32 private_2;

};

An _Unwind_Exception object must be eightbyte aligned. The first two
fields are set by user code prior to raising the exception, and the latter two should
never be touched except by the runtime.

The exception_class field is a language- and implementation-specific
identifier of the kind of exception. It allows a personality routine to distinguish
between native and foreign exceptions, for example. By convention, the high 4
bytes indicate the vendor (for instance GNUC), and the low 4 bytes indicate the
language. For the C++ ABI described in this document, the low four bytes are
C++\0.

39

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

The exception_cleanup routine is called whenever an exception object
needs to be destroyed by a different runtime than the runtime which created the
exception object, for instance if a Java exception is caught by a C++ catch handler.
In such a case, a reason code (see above) indicates why the exception object needs
to be deleted:

_URC_FOREIGN_EXCEPTION_CAUGHT = 1 This indicates that a different
runtime caught this exception. Nested foreign exceptions, or re-throwing a
foreign exception, result in undefined behavior.

_URC_FATAL_PHASE1_ERROR = 3 The personality routine encountered an
error during phase 1, other than the specific error codes defined.

_URC_FATAL_PHASE2_ERROR = 2 The personality routine encountered an
error during phase 2, for instance a stack corruption.

Normally, all errors should be reported during phase 1 by returning from
_Unwind_RaiseException. However, landing pad code could cause stack
corruption between phase 1 and phase 2. For a C++ exception, the runtime should
call terminate() in that case.

The private unwinder state (private_1 and private_2) in an exception
object should be neither read by nor written to by personality routines or other
parts of the language-specific runtime. It is used by the specific implementation
of the unwinder on the host to store internal information, for instance to remember
the final handler frame between unwinding phases.

In addition to the above information, a typical runtime such as the C++ run-
time will add language-specific information used to process the exception. This
is expected to be a contiguous area of memory after the _Unwind_Exception
object, but this is not required as long as the matching personality routines know
how to deal with it, and the exception_cleanup routine de-allocates it prop-
erly.

Unwind Context

The _Unwind_Context type is an opaque type used to refer to a system-
specific data structure used by the system unwinder. This context is created and
destroyed by the system, and passed to the personality routine during unwinding.

struct _Unwind_Context

40

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

4.1.3 Throwing an Exception
_Unwind_RaiseException

_Unwind_Reason_Code _Unwind_RaiseException
(struct _Unwind_Exception *exception_object);

Raise an exception, passing along the given exception object, which should
have its exception_class and exception_cleanup fields set. The ex-
ception object has been allocated by the language-specific runtime, and has a
language-specific format, except that it must contain an _Unwind_Exception
struct (see Exception Header above). _Unwind_RaiseException does not
return, unless an error condition is found (such as no handler for the exception,
bad stack format, etc.). In such a case, an _Unwind_Reason_Code value is
returned.

Possibilities are:

_URC_END_OF_STACK The unwinder encountered the end of the stack dur-
ing phase 1, without finding a handler. The unwind runtime will
not have modified the stack. The C++ runtime will normally call
uncaught_exception() in this case.

_URC_FATAL_PHASE1_ERROR The unwinder encountered an unexpected er-
ror during phase 1, e.g. stack corruption. The unwind runtime will not have
modified the stack. The C++ runtime will normally call terminate() in
this case.

If the unwinder encounters an unexpected error during phase 2, it should re-
turn _URC_FATAL_PHASE2_ERROR to its caller. In C++, this will usually be
__cxa_throw, which will call terminate().

The unwind runtime will likely have modified the stack (e.g. popped frames
from it) or register context, or landing pad code may have corrupted them. As a
result, the the caller of _Unwind_RaiseException can make no assumptions
about the state of its stack or registers.

41

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

_Unwind_ForcedUnwind

typedef _Unwind_Reason_Code (*_Unwind_Stop_Fn)
(int version,
_Unwind_Action actions,
uint64 exceptionClass,
struct _Unwind_Exception *exceptionObject,
struct _Unwind_Context *context,
void *stop_parameter);
_Unwind_Reason_Code_Unwind_ForcedUnwind
(struct _Unwind_Exception *exception_object,
_Unwind_Stop_Fn stop,
void *stop_parameter);

Raise an exception for forced unwinding, passing along the given
exception object, which should have its exception_class and
exception_cleanup fields set. The exception object has been allo-
cated by the language-specific runtime, and has a language-specific format,
except that it must contain an _Unwind_Exception struct (see Exception
Header above).

Forced unwinding is a single-phase process (phase 2 of the normal exception-
handling process). The stop and stop_parameter parameters control the
termination of the unwind process, instead of the usual personality routine query.
The stop function parameter is called for each unwind frame, with the pa-
rameters described for the usual personality routine below, plus an additional
stop_parameter.

When the stop function identifies the destination frame, it transfers control
(according to its own, unspecified, conventions) to the user code as appropriate
without returning, normally after calling _Unwind_DeleteException. If
not, it should return an _Unwind_Reason_Code value as follows:

_URC_NO_REASON This is not the destination frame. The unwind runtime will
call the frame’s personality routine with the _UA_FORCE_UNWIND and
_UA_CLEANUP_PHASE flags set in actions, and then unwind to the next
frame and call the stop function again.

_URC_END_OF_STACK In order to allow _Unwind_ForcedUnwind to per-
form special processing when it reaches the end of the stack, the unwind
runtime will call it after the last frame is rejected, with a NULL stack pointer

42

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

in the context, and the stop function must catch this condition (i.e. by notic-
ing the NULL stack pointer). It may return this reason code if it cannot
handle end-of-stack.

_URC_FATAL_PHASE2_ERROR The stop function may return this code for
other fatal conditions, e.g. stack corruption.

If the stop function returns any reason code other than _URC_NO_REASON,
the stack state is indeterminate from the point of view of the caller of
_Unwind_ForcedUnwind. Rather than attempt to return, therefore, the un-
wind library should return _URC_FATAL_PHASE2_ERROR to its caller.

Example: longjmp_unwind()
The expected implementation of longjmp_unwind() is as follows. The

setjmp() routine will have saved the state to be restored in its custom-
ary place, including the frame pointer. The longjmp_unwind() routine
will call _Unwind_ForcedUnwind with a stop function that compares the
frame pointer in the context record with the saved frame pointer. If equal,
it will restore the setjmp() state as customary, and otherwise it will return
_URC_NO_REASON or _URC_END_OF_STACK.

If a future requirement for two-phase forced unwinding were identified, an al-
ternate routine could be defined to request it, and an actions parameter flag defined
to support it.

_Unwind_Resume

void _Unwind_Resume
(struct _Unwind_Exception *exception_object);

Resume propagation of an existing exception e.g. after executing cleanup code
in a partially unwound stack. A call to this routine is inserted at the end of a
landing pad that performed cleanup, but did not resume normal execution. It
causes unwinding to proceed further.

_Unwind_Resume should not be used to implement re-throwing. To the
unwinding runtime, the catch code that re-throws was a handler, and the previous
unwinding session was terminated before entering it. Re-throwing is implemented
by calling _Unwind_RaiseException again with the same exception object.

This is the only routine in the unwind library which is expected to be called
directly by generated code: it will be called at the end of a landing pad in a
"landing-pad" model.

43

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

4.1.4 Exception Object Management
_Unwind_DeleteException

void _Unwind_DeleteException
(struct _Unwind_Exception *exception_object);

Deletes the given exception object. If a given runtime resumes nor-
mal execution after catching a foreign exception, it will not know how
to delete that exception. Such an exception will be deleted by calling
_Unwind_DeleteException. This is a convenience function that calls the
function pointed to by the exception_cleanup field of the exception header.

4.1.5 Context Management
These functions are used for communicating information about the unwind con-
text (i.e. the unwind descriptors and the user register state) between the unwind
library and the personality routine and landing pad. They include routines to read
or set the context record images of registers in the stack frame corresponding to a
given unwind context, and to identify the location of the current unwind descrip-
tors and unwind frame.

_Unwind_GetGR

uint32 _Unwind_GetGR
(struct _Unwind_Context *context, int index);

This function returns the 32-bit value of the given general register. The register
is identified by its index as given in table 2.12.

During the two phases of unwinding, no registers have a guaranteed value.

_Unwind_SetGR

void _Unwind_SetGR
(struct _Unwind_Context *context,
int index,
uint32 new_value);

This function sets the 32-bit value of the given register, identified by its index
as for _Unwind_GetGR.

The behavior is guaranteed only if the function is called during phase 2 of
unwinding, and applied to an unwind context representing a handler frame, for

44

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

which the personality routine will return _URC_INSTALL_CONTEXT. In that
case, only registers %eax and %edx should be used. These scratch registers are
reserved for passing arguments between the personality routine and the landing
pads.

_Unwind_GetIP

uint32 _Unwind_GetIP
(struct _Unwind_Context *context);

This function returns the 32-bit value of the instruction pointer (IP).
During unwinding, the value is guaranteed to be the address of the instruction

immediately following the call site in the function identified by the unwind con-
text. This value may be outside of the procedure fragment for a function call that
is known to not return (such as _Unwind_Resume).

_Unwind_SetIP

void _Unwind_SetIP
(struct _Unwind_Context *context,
uint32 new_value);

This function sets the value of the instruction pointer (IP) for the routine iden-
tified by the unwind context.

The behavior is guaranteed only when this function is called for an unwind
context representing a handler frame, for which the personality routine will return
_URC_INSTALL_CONTEXT. In this case, control will be transferred to the given
address, which should be the address of a landing pad.

_Unwind_GetLanguageSpecificData

uint32 _Unwind_GetLanguageSpecificData
(struct _Unwind_Context *context);
This routine returns the address of the language-specific data area for the cur-

rent stack frame.
This routine is not strictly required: it could be accessed through

_Unwind_GetIP using the documented format of the DWARF Call Frame In-
formation Tables, but since this work has been done for finding the personality
routine in the first place, it makes sense to cache the result in the context. We
could also pass it as an argument to the personality routine.

45

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

_Unwind_GetRegionStart

uint32 _Unwind_GetRegionStart
(struct _Unwind_Context *context);

This routine returns the address of the beginning of the procedure or code
fragment described by the current unwind descriptor block.

This information is required to access any data stored relative to the beginning
of the procedure fragment. For instance, a call site table might be stored relative
to the beginning of the procedure fragment that contains the calls. During un-
winding, the function returns the start of the procedure fragment containing the
call site in the current stack frame.

_Unwind_GetCFA

uint32 _Unwind_GetCFA
(struct _Unwind_Context *context);

This function returns the 32-bit Canonical Frame Address which is defined as
the value of %esp at the call site in the previous frame. This value is guaranteed
to be correct any time the context has been passed to a personality routine or a
stop function.

4.1.6 Personality Routine
_Unwind_Reason_Code (*__personality_routine)

(int version,
_Unwind_Action actions,
uint64 exceptionClass,
struct _Unwind_Exception *exceptionObject,
struct _Unwind_Context *context);

The personality routine is the function in the C++ (or other language) run-
time library which serves as an interface between the system unwind library and
language-specific exception handling semantics. It is specific to the code fragment
described by an unwind info block, and it is always referenced via the pointer in
the unwind info block, and hence it has no psABI-specified name.

Parameters

The personality routine parameters are as follows:

46

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

version Version number of the unwinding runtime, used to detect a mis-match
between the unwinder conventions and the personality routine, or to provide
backward compatibility. For the conventions described in this document,
version will be 1.

actions Indicates what processing the personality routine is expected to per-
form, as a bit mask. The possible actions are described below.

exceptionClass An 8-byte identifier specifying the type of the thrown ex-
ception. By convention, the high 4 bytes indicate the vendor (for instance
GNUC), and the low 4 bytes indicate the language. For the C++ ABI de-
scribed in this document, the low four bytes are C++\0. This is not a null-
terminated string. Some implementations may use no null bytes.

exceptionObject The pointer to a memory location recording the necessary
information for processing the exception according to the semantics of a
given language (see the Exception Header section above).

context Unwinder state information for use by the personality routine. This is
an opaque handle used by the personality routine in particular to access the
frame’s registers (see the Unwind Context section above).

return value The return value from the personality routine indicates how further
unwind should happen, as well as possible error conditions. See the follow-
ing section.

Personality Routine Actions

The actions argument to the personality routine is a bitwise OR of one or more of
the following constants:
typedef int _Unwind_Action;
const _Unwind_Action _UA_SEARCH_PHASE = 1;
const _Unwind_Action _UA_CLEANUP_PHASE = 2;
const _Unwind_Action _UA_HANDLER_FRAME = 4;
const _Unwind_Action _UA_FORCE_UNWIND = 8;

_UA_SEARCH_PHASE Indicates that the personality routine should check if the
current frame contains a handler, and if so return _URC_HANDLER_FOUND,

47

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

or otherwise return _URC_CONTINUE_UNWIND. _UA_SEARCH_PHASE
cannot be set at the same time as _UA_CLEANUP_PHASE.

_UA_CLEANUP_PHASE Indicates that the personality routine should per-
form cleanup for the current frame. The personality routine can
perform this cleanup itself, by calling nested procedures, and return
_URC_CONTINUE_UNWIND. Alternatively, it can setup the registers (in-
cluding the IP) for transferring control to a "landing pad", and return
_URC_INSTALL_CONTEXT.

_UA_HANDLER_FRAME During phase 2, indicates to the personality routine
that the current frame is the one which was flagged as the handler frame
during phase 1. The personality routine is not allowed to change its mind
between phase 1 and phase 2, i.e. it must handle the exception in this frame
in phase 2.

_UA_FORCE_UNWIND During phase 2, indicates that no language is allowed
to "catch" the exception. This flag is set while unwinding the stack for
longjmp or during thread cancellation. User-defined code in a catch clause
may still be executed, but the catch clause must resume unwinding with a
call to _Unwind_Resume when finished.

Transferring Control to a Landing Pad

If the personality routine determines that it should transfer control to a landing
pad (in phase 2), it may set up registers (including IP) with suitable values for
entering the landing pad (e.g. with landing pad parameters), by calling the context
management routines above. It then returns _URC_INSTALL_CONTEXT.

Prior to executing code in the landing pad, the unwind library restores registers
not altered by the personality routine, using the context record, to their state in that
frame before the call that threw the exception, as follows. All registers specified
as callee-saved by the base ABI are restored, as well as scratch registers %eax and
%edx (see below). Except for those exceptions, scratch (or caller-saved) registers
are not preserved, and their contents are undefined on transfer.

The landing pad can either resume normal execution (as, for instance, at the
end of a C++ catch), or resume unwinding by calling _Unwind_Resume and
passing it the exceptionObject argument received by the personality routine.
_Unwind_Resume will never return.

48

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

_Unwind_Resume should be called if and only if the personality routine
did not return _Unwind_HANDLER_FOUND during phase 1. As a result, the
unwinder can allocate resources (for instance memory) and keep track of them in
the exception object reserved words. It should then free these resources before
transferring control to the last (handler) landing pad. It does not need to free the
resources before entering non-handler landing-pads, since _Unwind_Resume
will ultimately be called.

The landing pad may receive arguments from the runtime, typically passed
in registers set using _Unwind_SetGR by the personality routine. For
a landing pad that can call to _Unwind_Resume, one argument must be
the exceptionObject pointer, which must be preserved to be passed to
_Unwind_Resume.

The landing pad may receive other arguments, for instance a switch value
indicating the type of the exception. Two scratch registers are reserved for this
use (%eax and %edx).

Rules for Correct Inter-Language Operation

The following rules must be observed for correct operation between languages
and/or run times from different vendors:

An exception which has an unknown class must not be altered by the personal-
ity routine. The semantics of foreign exception processing depend on the language
of the stack frame being unwound. This covers in particular how exceptions from
a foreign language are mapped to the native language in that frame.

If a runtime resumes normal execution, and the caught exception was created
by another runtime, it should call _Unwind_DeleteException. This is true
even if it understands the exception object format (such as would be the case
between different C++ run times).

A runtime is not allowed to catch an exception if the _UA_FORCE_UNWIND
flag was passed to the personality routine.

Example: Foreign Exceptions in C++. In C++, foreign exceptions
can be caught by a catch(...) statement. They can also be
caught as if they were of a __foreign_exception class, defined in
<exception>. The __foreign_exception may have subclasses, such as
__java_exception and __ada_exception, if the runtime is capable of
identifying some of the foreign languages.

The behavior is undefined in the following cases:

49

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

• A __foreign_exception catch argument is accessed in any way (in-
cluding taking its address).

• A __foreign_exception is active at the same time as another excep-
tion (either there is a nested exception while catching the foreign exception,
or the foreign exception was itself nested).

• uncaught_exception(), set_terminate(), set_unexpected(),
terminate(), or unexpected() is called at a time a foreign excep-
tion exists (for example, calling set_terminate() during unwinding
of a foreign exception).

All these cases might involve accessing C++ specific content of the thrown
exception, for instance to chain active exceptions.

Otherwise, a catch block catching a foreign exception is allowed:

• to resume normal execution, thereby stopping propagation of the foreign
exception and deleting it, or

• to re-throw the foreign exception. In that case, the original exception object
must be unaltered by the C++ runtime.

A catch-all block may be executed during forced unwinding. For instance, a
longjmp may execute code in a catch(...) during stack unwinding. However,
if this happens, unwinding will proceed at the end of the catch-all block, whether
or not there is an explicit re-throw.

Setting the low 4 bytes of exception class to C++\0 is reserved for use by C++
run-times compatible with the common C++ ABI.

50

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Chapter 5

Development Environment

During compilation of C or C++ code at least the symbols in table 5.1 are defined
by the pre-processor.

Table 5.1: Predefined Pre-Processor Symbols

__iamcu
__iamcu__

51

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

Chapter 6

Conventions

1

1This chapter is used to document some features special to the Intel MCU ABI. The different
sections might be moved to another place or removed completely.

52

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

6.1 C++
For the C++ ABI we will use the IA-64 C++ ABI and instantiate it appropriately.
The current draft of that ABI is available at:
http://mentorembedded.github.io/cxx-abi/

53

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

http://mentorembedded.github.io/cxx-abi/

Index

_UA_CLEANUP_PHASE, 37
_UA_FORCE_UNWIND, 36
_UA_SEARCH_PHASE, 37
_Unwind_Context, 36
_Unwind_DeleteException, 35
_Unwind_Exception, 36
_Unwind_ForcedUnwind, 35, 36
_Unwind_GetCFA, 35
_Unwind_GetGR, 35
_Unwind_GetIP, 35
_Unwind_GetLanguageSpecificData, 35
_Unwind_GetRegionStart, 35
_Unwind_RaiseException, 35, 36
_Unwind_Resume, 35
_Unwind_SetGR, 35
_Unwind_SetIP, 35

auxiliary vector, 18

boolean, 10
byte, 8

C++, 53
Call Frame Information tables, 35

double quadword, 8
doubleword, 8
DWARF Debugging Information Format, 35

eightbyte, 8

54

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

exec, 17

fourbyte, 8

halfword, 8

longjmp, 36

Procedure Linkage Table, 32

quadword, 8

sixteenbyte, 8
size_t, 10

terminate(), 37
Thread-Local Storage, 34
twobyte, 8

Unwind Library interface, 35

word, 8

55

Intel MCU ABI 0.7 – July 3, 2015 – 7:58

	About this Document
	Scope
	Changes from Intel386 System V ABI
	Related Information

	Low Level System Information
	Machine Interface
	Data Representation

	Function Calling Sequence
	Registers
	The Stack Frame
	Parameter Passing and Returning Values
	Variable Argument Lists

	Process Initialization
	Initial Stack and Register State
	Auxiliary Vector

	DWARF Definition
	DWARF Release Number
	DWARF Register Number Mapping

	Stack Unwind Algorithm

	Object Files
	ELF Header
	Machine Information
	Number of Program Headers

	Sections
	Special Sections
	EH_FRAME sections

	Symbol Table
	Relocation
	Relocation Types

	Libraries
	Unwind Library Interface
	Exception Handler Framework
	Data Structures
	Throwing an Exception
	Exception Object Management
	Context Management
	Personality Routine

	Development Environment
	Conventions
	C++

