You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
loaded = torch.load(args.model_file)['params']
instead of:
loaded = torch.load(args.model_file, map_location=device)
can fix the problem.
The input/output tensors has data range 0~1.
With the code:
device = torch.device(args.device)
net = SPAN(3, 3, upscale=2, feature_channels=48).to(device)
loaded = torch.load(args.model_file, map_location=device)
net.load_state_dict(loaded, strict=True)
I got this error when loading the spanx2_ch48.pth file:
File "/home/amd/anaconda3/envs/SPAN/lib/python3.9/site-packages/torch/nn/modules/module.py", line 2189, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for SPAN:
Missing key(s) in state_dict: "conv_1.sk.weight", "conv_1.sk.bias", "conv_1.conv.0.weight", "conv_1.conv.0.bias", "conv_1.conv.1.weight", "conv_1.conv.1.bias", "conv_1.conv.2.weight", "conv_1.conv.2.bias", "conv_1.eval_conv.weight", "conv_1.eval_conv.bias", "block_1.c1_r.sk.weight", "block_1.c1_r.sk.bias", "block_1.c1_r.conv.0.weight", "block_1.c1_r.conv.0.bias", "block_1.c1_r.conv.1.weight", "block_1.c1_r.conv.1.bias", "block_1.c1_r.conv.2.weight", "block_1.c1_r.conv.2.bias", "block_1.c1_r.eval_conv.weight", "block_1.c1_r.eval_conv.bias", "block_1.c2_r.sk.weight", "block_1.c2_r.sk.bias", "block_1.c2_r.conv.0.weight", "block_1.c2_r.conv.0.bias", "block_1.c2_r.conv.1.weight", "block_1.c2_r.conv.1.bias", "block_1.c2_r.conv.2.weight", "block_1.c2_r.conv.2.bias", "block_1.c2_r.eval_conv.weight", "block_1.c2_r.eval_conv.bias", "block_1.c3_r.sk.weight", "block_1.c3_r.sk.bias", "block_1.c3_r.conv.0.weight", "block_1.c3_r.conv.0.bias", "block_1.c3_r.conv.1.weight", "block_1.c3_r.conv.1.bias", "block_1.c3_r.conv.2.weight", "block_1.c3_r.conv.2.bias", "block_1.c3_r.eval_conv.weight", "block_1.c3_r.eval_conv.bias", "block_2.c1_r.sk.weight", "block_2.c1_r.sk.bias", "block_2.c1_r.conv.0.weight", "block_2.c1_r.conv.0.bias", "block_2.c1_r.conv.1.weight", "block_2.c1_r.conv.1.bias", "block_2.c1_r.conv.2.weight", "block_2.c1_r.conv.2.bias", "block_2.c1_r.eval_conv.weight", "block_2.c1_r.eval_conv.bias", "block_2.c2_r.sk.weight", "block_2.c2_r.sk.bias", "block_2.c2_r.conv.0.weight", "block_2.c2_r.conv.0.bias", "block_2.c2_r.conv.1.weight", "block_2.c2_r.conv.1.bias", "block_2.c2_r.conv.2.weight", "block_2.c2_r.conv.2.bias", "block_2.c2_r.eval_conv.weight", "block_2.c2_r.eval_conv.bias", "block_2.c3_r.sk.weight", "block_2.c3_r.sk.bias", "block_2.c3_r.conv.0.weight", "block_2.c3_r.conv.0.bias", "block_2.c3_r.conv.1.weight", "block_2.c3_r.conv.1.bias", "block_2.c3_r.conv.2.weight", "block_2.c3_r.conv.2.bias", "block_2.c3_r.eval_conv.weight", "block_2.c3_r.eval_conv.bias", "block_3.c1_r.sk.weight", "block_3.c1_r.sk.bias", "block_3.c1_r.conv.0.weight", "block_3.c1_r.conv.0.bias", "block_3.c1_r.conv.1.weight", "block_3.c1_r.conv.1.bias", "block_3.c1_r.conv.2.weight", "block_3.c1_r.conv.2.bias", "block_3.c1_r.eval_conv.weight", "block_3.c1_r.eval_conv.bias", "block_3.c2_r.sk.weight", "block_3.c2_r.sk.bias", "block_3.c2_r.conv.0.weight", "block_3.c2_r.conv.0.bias", "block_3.c2_r.conv.1.weight", "block_3.c2_r.conv.1.bias", "block_3.c2_r.conv.2.weight", "block_3.c2_r.conv.2.bias", "block_3.c2_r.eval_conv.weight", "block_3.c2_r.eval_conv.bias", "block_3.c3_r.sk.weight", "block_3.c3_r.sk.bias", "block_3.c3_r.conv.0.weight", "block_3.c3_r.conv.0.bias", "block_3.c3_r.conv.1.weight", "block_3.c3_r.conv.1.bias", "block_3.c3_r.conv.2.weight", "block_3.c3_r.conv.2.bias", "block_3.c3_r.eval_conv.weight", "block_3.c3_r.eval_conv.bias", "block_4.c1_r.sk.weight", "block_4.c1_r.sk.bias", "block_4.c1_r.conv.0.weight", "block_4.c1_r.conv.0.bias", "block_4.c1_r.conv.1.weight", "block_4.c1_r.conv.1.bias", "block_4.c1_r.conv.2.weight", "block_4.c1_r.conv.2.bias", "block_4.c1_r.eval_conv.weight", "block_4.c1_r.eval_conv.bias", "block_4.c2_r.sk.weight", "block_4.c2_r.sk.bias", "block_4.c2_r.conv.0.weight", "block_4.c2_r.conv.0.bias", "block_4.c2_r.conv.1.weight", "block_4.c2_r.conv.1.bias", "block_4.c2_r.conv.2.weight", "block_4.c2_r.conv.2.bias", "block_4.c2_r.eval_conv.weight", "block_4.c2_r.eval_conv.bias", "block_4.c3_r.sk.weight", "block_4.c3_r.sk.bias", "block_4.c3_r.conv.0.weight", "block_4.c3_r.conv.0.bias", "block_4.c3_r.conv.1.weight", "block_4.c3_r.conv.1.bias", "block_4.c3_r.conv.2.weight", "block_4.c3_r.conv.2.bias", "block_4.c3_r.eval_conv.weight", "block_4.c3_r.eval_conv.bias", "block_5.c1_r.sk.weight", "block_5.c1_r.sk.bias", "block_5.c1_r.conv.0.weight", "block_5.c1_r.conv.0.bias", "block_5.c1_r.conv.1.weight", "block_5.c1_r.conv.1.bias", "block_5.c1_r.conv.2.weight", "block_5.c1_r.conv.2.bias", "block_5.c1_r.eval_conv.weight", "block_5.c1_r.eval_conv.bias", "block_5.c2_r.sk.weight", "block_5.c2_r.sk.bias", "block_5.c2_r.conv.0.weight", "block_5.c2_r.conv.0.bias", "block_5.c2_r.conv.1.weight", "block_5.c2_r.conv.1.bias", "block_5.c2_r.conv.2.weight", "block_5.c2_r.conv.2.bias", "block_5.c2_r.eval_conv.weight", "block_5.c2_r.eval_conv.bias", "block_5.c3_r.sk.weight", "block_5.c3_r.sk.bias", "block_5.c3_r.conv.0.weight", "block_5.c3_r.conv.0.bias", "block_5.c3_r.conv.1.weight", "block_5.c3_r.conv.1.bias", "block_5.c3_r.conv.2.weight", "block_5.c3_r.conv.2.bias", "block_5.c3_r.eval_conv.weight", "block_5.c3_r.eval_conv.bias", "block_6.c1_r.sk.weight", "block_6.c1_r.sk.bias", "block_6.c1_r.conv.0.weight", "block_6.c1_r.conv.0.bias", "block_6.c1_r.conv.1.weight", "block_6.c1_r.conv.1.bias", "block_6.c1_r.conv.2.weight", "block_6.c1_r.conv.2.bias", "block_6.c1_r.eval_conv.weight", "block_6.c1_r.eval_conv.bias", "block_6.c2_r.sk.weight", "block_6.c2_r.sk.bias", "block_6.c2_r.conv.0.weight", "block_6.c2_r.conv.0.bias", "block_6.c2_r.conv.1.weight", "block_6.c2_r.conv.1.bias", "block_6.c2_r.conv.2.weight", "block_6.c2_r.conv.2.bias", "block_6.c2_r.eval_conv.weight", "block_6.c2_r.eval_conv.bias", "block_6.c3_r.sk.weight", "block_6.c3_r.sk.bias", "block_6.c3_r.conv.0.weight", "block_6.c3_r.conv.0.bias", "block_6.c3_r.conv.1.weight", "block_6.c3_r.conv.1.bias", "block_6.c3_r.conv.2.weight", "block_6.c3_r.conv.2.bias", "block_6.c3_r.eval_conv.weight", "block_6.c3_r.eval_conv.bias", "conv_cat.weight", "conv_cat.bias", "conv_2.sk.weight", "conv_2.sk.bias", "conv_2.conv.0.weight", "conv_2.conv.0.bias", "conv_2.conv.1.weight", "conv_2.conv.1.bias", "conv_2.conv.2.weight", "conv_2.conv.2.bias", "conv_2.eval_conv.weight", "conv_2.eval_conv.bias", "upsampler.0.weight", "upsampler.0.bias".
Unexpected key(s) in state_dict: "params", "params_ema".
any idea?
The text was updated successfully, but these errors were encountered: