We propose two more challenging benchmarks ShapeNet-55 and ShapeNet-34 with more diverse incomplete point clouds that can better reflect the real-world scenarios to promote future research. Our dataset is based on ShapeNetCore. Compared to existing datasets like PCN, ShapeNet-55 considers more diverse tasks (i.e., upsampling and completion of point cloud), more diverse categories (i.e., from 8 categories to 55 categories), more diverse viewpoints (i.e., from 8 viewpoints to all possible viewpoints) and more diverse levels of incompleteness (i.e., missing 25% to 75% points of the groundtruth point clouds). We also propose to benchmark the completion perfomance on objects from unseen categories with ShapeNet-34.
The overall directory structure should be:
│PoinTr/
├──cfgs/
├──datasets/
├──data/
│ ├──ShapeNet55-34/
│ ├──PCN/
│ ├──KITTI/
├──.......
ShapeNet55/34 Dataset: You can download the processed ShapeNet55/34 dataset at [BaiduCloud] (code:le04) or [Google Drive]. Unzip the file under ShapeNet55-34/
. The directory structure should be
│ShapeNet55-34/
├──shapenet_pc/
│ ├── 02691156-xxxxxxxxxxxxxx.npy
│ ├── 02691156-xxxxxxxxxxxxxx.npy
│ ├── .......
├──ShapeNet-34/
│ ├── train.txt
│ └── test.txt
├──ShapeNet-34/
│ ├── train.txt
│ └── test.txt
├──ShapeNet-Unseen21/
└── test.txt
PCN Dataset: You can download the processed PCN dataset from this url. The directory structure should be
│PCN/
├──train/
│ ├── complete
│ │ ├── 02691156
│ │ │ ├── xxxxxxxxxxxxxx.pcd
│ │ │ ├── .......
│ │ ├── .......
│ ├── partial
│ │ ├── 02691156
│ │ │ ├── xxxxxxxxxxxxxx
│ │ │ │ ├── 00.pcd
│ │ │ │ ├── 01.pcd
│ │ │ │ ├── .......
│ │ │ │ └── 07.pcd
│ │ │ ├── .......
│ │ ├── .......
├──test/
│ ├── complete
│ │ ├── 02691156
│ │ │ ├── xxxxxxxxxxxxxx.pcd
│ │ │ ├── .......
│ │ ├── .......
│ ├── partial
│ │ ├── 02691156
│ │ │ ├── xxxxxxxxxxxxxx
│ │ │ │ └── 00.pcd
│ │ │ ├── .......
│ │ ├── .......
├──val/
│ ├── complete
│ │ ├── 02691156
│ │ │ ├── xxxxxxxxxxxxxx.pcd
│ │ │ ├── .......
│ │ ├── .......
│ ├── partial
│ │ ├── 02691156
│ │ │ ├── xxxxxxxxxxxxxx
│ │ │ │ └── 00.pcd
│ │ │ ├── .......
│ │ ├── .......
├──PCN.json
└──category.txt
KITTI: You can download the KITTI dataset from this url. The directory structure should be
│KITTI/
├──bboxes/
│ ├── frame_0_car_0.txt
│ ├── .......
├──cars/
│ ├── frame_0_car_0.pcd
│ ├── .......
├──tracklets/
│ ├── tracklet_0.txt
│ ├── .......
├──KITTI.json