-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.jl
79 lines (70 loc) · 2 KB
/
main.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
using Merlin
using Merlin.Datasets.MNIST
const NEPOCHS = 50
function main()
trainmode = true
datapath = joinpath(@__DIR__, ".data")
traindata = setup_data(MNIST.traindata(datapath)...)
testdata = setup_data(MNIST.testdata(datapath)...)
savefile = "mnist_epoch$(NEPOCHS).jld2"
if trainmode
# model = setup_model()
train(traindata, testdata)
#save(savefile, "model", model)
else
model = load(savefile, "model")
test(model, testdata)
end
end
function setup_data(x::Matrix{Float32}, y::Vector{Int})
batchsize = 200
xs = [x[:,i:i+batchsize-1] for i=1:batchsize:size(x,2)]
xs = map(BACKEND, xs)
y += 1 # Change label set: 0..9 -> 1..10
y = Array{Int32}(y)
ys = [y[i:i+batchsize-1] for i=1:batchsize:length(y)]
ys = map(BACKEND, ys)
collect(zip(xs,ys))
end
function NN()
T = Float32
hsize = 1000
h = Linear(T,28*28,hsize)(Node(name="x"))
h = relu(h)
h = Linear(T,hsize,hsize)(h)
h = relu(h)
h = Linear(T,hsize,10)(h)
BACKEND(Graph(h))
end
function train(traindata::Vector, testdata::Vector)
nn = NN()
opt = SGD(0.001)
for epoch = 1:NEPOCHS
println("epoch: $epoch")
prog = Progress(length(traindata))
loss = 0.0
for (x,y) in shuffle!(traindata)
z = nn(Var(x))
z = softmax_crossentropy(Var(y), z)
loss += sum(z.data)
params = gradient!(z)
foreach(opt, params)
ProgressMeter.next!(prog)
end
loss /= length(traindata)
println("Loss:\t$loss")
golds = Int32[]
preds = Int32[]
for (x,y) in testdata
append!(golds, Array(y))
z = nn(Var(x))
z = argmax(Array(z.data), 1)
append!(preds, z)
end
@assert length(golds) == length(preds)
acc = mean(i -> golds[i] == preds[i] ? 1.0 : 0.0, 1:length(golds))
println("test accuracy: $acc")
println()
end
end
@time main()