-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils_general.py
472 lines (373 loc) · 18.1 KB
/
utils_general.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
from mask_component_bi import MaskedModule
from utils_libs import *
from utils_dataset import *
from utils_models import *
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
import time
max_norm = 10
# --- Evaluate a NN model
def get_acc_loss(data_x, data_y, model, dataset_name, device, w_decay=None):
acc_overall = 0;
loss_overall = 0
loss_fn = torch.nn.CrossEntropyLoss(reduction='sum')
batch_size = min(2000, data_x.shape[0])
n_test = data_x.shape[0]
test_gen = data.DataLoader(Dataset(data_x, data_y, dataset_name=dataset_name), batch_size=batch_size, shuffle=True)
model.eval()
model = model.to(device)
with torch.no_grad():
test_gen_iter = test_gen.__iter__()
for i in range(int(np.ceil(n_test / batch_size))):
batch_x, batch_y = test_gen_iter.__next__()
batch_x = batch_x.to(device)
batch_y = batch_y.to(device)
y_pred = model(batch_x)
loss = loss_fn(y_pred, batch_y.reshape(-1).long())
loss_overall += loss.item()
# Accuracy calculation
y_pred = y_pred.cpu().numpy()
y_pred = np.argmax(y_pred, axis=1).reshape(-1)
batch_y = batch_y.cpu().numpy().reshape(-1).astype(np.int32)
batch_correct = np.sum(y_pred == batch_y)
acc_overall += batch_correct
loss_overall /= n_test
if w_decay != None:
# Add L2 loss
params = get_mdl_params([model], n_par=None)
loss_overall += w_decay / 2 * np.sum(params * params)
model.train()
return loss_overall, acc_overall / n_test
# --- Helper functions
def avg_models(mdl, client_models, weight_list):
n_node = len(client_models)
dict_list = list(range(n_node));
for i in range(n_node):
dict_list[i] = copy.deepcopy(dict(client_models[i].named_parameters()))
param_0 = client_models[0].named_parameters()
for name, param in param_0:
param_ = weight_list[0] * param.data
for i in list(range(1, n_node)):
param_ = param_ + weight_list[i] * dict_list[i][name].data
dict_list[0][name].data.copy_(param_)
mdl.load_state_dict(dict_list[0])
# Remove dict_list from memory
del dict_list
return mdl
def set_client_from_params(mdl, params,device):
dict_param = copy.deepcopy(dict(mdl.named_parameters()))
idx = 0
for name, param in mdl.named_parameters():
weights = param.data
length = len(weights.reshape(-1))
dict_param[name].data.copy_(torch.tensor(params[idx:idx + length].reshape(weights.shape)).to(device))
idx += length
mdl.load_state_dict(dict_param)
return mdl
def get_mdl_params(model_list, n_par=None):
if n_par == None:
exp_mdl = model_list[0]
n_par = 0
for name, param in exp_mdl.named_parameters():
n_par += len(param.data.reshape(-1))
param_mat = np.zeros((len(model_list), n_par)).astype('float32')
for i, mdl in enumerate(model_list):
idx = 0
for name, param in mdl.named_parameters():
if ".p" not in name:
temp = param.data.cpu().numpy().reshape(-1)
param_mat[i, idx:idx + len(temp)] = temp
idx += len(temp)
return np.copy(param_mat)
# --- Training models fedavg
def train_model(model, train_x, train_y, test_x, test_y, learning_rate, batch_size, epoch, print_per, weight_decay,
dataset_name, sch_step, sch_gamma , device, print_verbose=True):
n_train = train_x.shape[0]
train_gen = data.DataLoader(Dataset(train_x, train_y, train=True, dataset_name=dataset_name), batch_size=batch_size,
shuffle=True)
loss_fn = torch.nn.CrossEntropyLoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
model.train()
model = model.to(device)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=sch_step, gamma=sch_gamma)
# Put test_x=False if no test data given
print_test = not isinstance(test_x, bool)
model.train()
for e in range(epoch):
if print_verbose and (e == 0 or (e + 1) % print_per == 0):
loss_train, acc_train = get_acc_loss(train_x, train_y, model, dataset_name, device, weight_decay)
if print_test:
loss_test, acc_test = get_acc_loss(test_x, test_y, model, dataset_name,device, 0)
print("Epoch %3d, Training Accuracy: %.4f, Loss: %.4f, Test Accuracy: %.4f, Loss: %.4f, LR: %.4f"
% (e + 1, acc_train, loss_train, acc_test, loss_test, scheduler.get_lr()[0]),flush=True)
else:
print("Epoch %3d, Training Accuracy: %.4f, Loss: %.4f, LR: %.4f" % (
e + 1, acc_train, loss_train, scheduler.get_lr()[0]),flush=True)
model.train()
# Training
train_gen_iter = train_gen.__iter__()
for i in range(int(np.ceil(n_train / batch_size))):
batch_x, batch_y = train_gen_iter.__next__()
batch_x = batch_x.to(device)
batch_y = batch_y.to(device)
y_pred = model(batch_x)
loss = loss_fn(y_pred, batch_y.reshape(-1).long())
loss = loss / list(batch_y.size())[0]
optimizer.zero_grad()
loss.backward()
# torch.nn.utils.clip_grad_norm_(parameters=model.parameters(),
# max_norm=max_norm) # Clip gradients to prevent exploding
optimizer.step()
# Freeze model
for params in model.parameters():
params.requires_grad = False
model.eval()
return model
def train_model_apfl(model, train_x, train_y, test_x, test_y, learning_rate, batch_size, epoch, print_per, weight_decay,
dataset_name, sch_step, sch_gamma , device, v, alpha_apfl=0.5, print_verbose=True):
n_train = train_x.shape[0]
train_gen = data.DataLoader(Dataset(train_x, train_y, train=True, dataset_name=dataset_name), batch_size=batch_size,
shuffle=True)
loss_fn = torch.nn.CrossEntropyLoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
model.train()
model = model.to(device)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=sch_step, gamma=sch_gamma)
# Put test_x=False if no test data given
print_test = not isinstance(test_x, bool)
model.train()
for e in range(epoch):
if print_verbose and (e == 0 or (e + 1) % print_per == 0):
loss_train, acc_train = get_acc_loss(train_x, train_y, model, dataset_name, device, weight_decay)
if print_test:
loss_test, acc_test = get_acc_loss(test_x, test_y, model, dataset_name,device, 0)
print("Epoch %3d, Training Accuracy: %.4f, Loss: %.4f, Test Accuracy: %.4f, Loss: %.4f, LR: %.4f"
% (e + 1, acc_train, loss_train, acc_test, loss_test, scheduler.get_lr()[0]),flush=True)
else:
print("Epoch %3d, Training Accuracy: %.4f, Loss: %.4f, LR: %.4f" % (
e + 1, acc_train, loss_train, scheduler.get_lr()[0]),flush=True)
model.train()
# Training
train_gen_iter = train_gen.__iter__()
for i in range(int(np.ceil(n_train / batch_size))):
batch_x, batch_y = train_gen_iter.__next__()
batch_x = batch_x.to(device)
batch_y = batch_y.to(device)
y_pred = model(batch_x)
loss = loss_fn(y_pred, batch_y.reshape(-1).long())
loss = loss / list(batch_y.size())[0]
optimizer.zero_grad()
loss.backward()
optimizer.step()
wt = copy.deepcopy(model.state_dict())
v_bar = {}
for k in model.state_dict().keys():
v_bar[k] = alpha_apfl * v[k].to(device) + (1-alpha_apfl) * wt[k]
model.load_state_dict(v_bar)
y_pred = model(batch_x)
loss = loss_fn(y_pred, batch_y.reshape(-1).long())
loss = alpha_apfl* loss / list(batch_y.size())[0]
optimizer.zero_grad()
loss.backward()
for name, param in model.named_parameters():
param.data = v[name].data.clone().to(device)
optimizer.step()
v = copy.deepcopy(model.state_dict())
model.load_state_dict(wt)
# Freeze model
for params in model.parameters():
params.requires_grad = False
model.eval()
# to cpu
for name in v:
v[name] = v[name].to("cpu")
return model, v
def train_scaffold_mdl(model, model_func, state_params_diff, train_x, train_y,
learning_rate, batch_size, n_minibatch, print_per,
weight_decay, dataset_name, sch_step, sch_gamma, device, print_verbose=False):
n_train = train_x.shape[0]
train_gen = data.DataLoader(Dataset(train_x, train_y, train=True, dataset_name=dataset_name), batch_size=batch_size,
shuffle=True)
loss_fn = torch.nn.CrossEntropyLoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
model = model.to(device)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=sch_step, gamma=sch_gamma)
model.train()
n_par = get_mdl_params([model_func()]).shape[1]
n_iter_per_epoch = int(np.ceil(n_train / batch_size))
epoch = np.ceil(n_minibatch / n_iter_per_epoch).astype(np.int64)
step_loss = 0
n_data_step = 0
for e in range(epoch):
train_gen_iter = train_gen.__iter__()
for i in range(int(np.ceil(n_train / batch_size))):
batch_x, batch_y = train_gen_iter.__next__()
batch_x = batch_x.to(device)
batch_y = batch_y.to(device)
y_pred = model(batch_x)
# Get f_i estimate
loss_f_i = loss_fn(y_pred, batch_y.reshape(-1).long())
loss_f_i = loss_f_i / list(batch_y.size())[0]
# Get linear penalty on the current parameter estimates
local_par_list = None
for param in model.parameters():
if not isinstance(local_par_list, torch.Tensor):
# Initially nothing to concatenate
local_par_list = param.reshape(-1)
else:
local_par_list = torch.cat((local_par_list, param.reshape(-1)), 0)
loss_algo = torch.sum(local_par_list * state_params_diff)
loss = loss_f_i + loss_algo
optimizer.zero_grad()
loss.backward()
# torch.nn.utils.clip_grad_norm_(parameters=model.parameters(),
# max_norm=max_norm) # Clip gradients to prevent exploding
optimizer.step()
step_loss += loss.item() * list(batch_y.size())[0];
n_data_step += list(batch_y.size())[0]
if print_verbose and (e == 0 or (e + 1) % print_per) == 0:
step_loss /= n_data_step
# if weight_decay != None:
# # Add L2 loss to complete f_i
# params = get_mdl_params([model], n_par)
# step_loss += (weight_decay)/2 * np.sum(params * params)
print("Step %3d, Training Loss: %.4f, LR: %.5f"
% (e + 1, step_loss, scheduler.get_lr()[0]))
step_loss = 0;
n_data_step = 0
model.train()
scheduler.step()
# Freeze model
for params in model.parameters():
params.requires_grad = False
model.eval()
return model
def switch_training_mode(model, mode):
for module in mask_modules(model):
module.set_train_status(mode)
def mask_modules(model):
new_modules = []
for module in model.modules():
if isinstance(module, MaskedModule):
new_modules.append(module)
return new_modules
def finetune_model(model, train_x, train_y,
learning_rate, batch_size, epoch, print_per, dataset_name, device, org_weights, weight_decay=1e-3, se_threshold=0, finetune_proximal=0, print_verbose=True, mode= "LR+S"):
gpu_org_weights ={}
for name in org_weights:
gpu_org_weights[name] = org_weights[name].to(device)
n_train = train_x.shape[0]
train_gen = data.DataLoader(Dataset(train_x, train_y, train=True, dataset_name=dataset_name), batch_size=batch_size,
shuffle=True)
loss_fn = torch.nn.CrossEntropyLoss(reduction='sum')
model.train()
# switch_training_mode(model, "train_p")
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=learning_rate, weight_decay=weight_decay)
for e in range(epoch):
# Training
epoch_loss = 0
train_gen_iter = train_gen.__iter__()
for i in range(int(np.ceil(n_train / batch_size))):
batch_x, batch_y = train_gen_iter.__next__()
batch_x = batch_x.to(device)
batch_y = batch_y.to(device)
y_pred = model(batch_x)
# print(batch_y)
## Get f_i estimate
loss_f_i = loss_fn(y_pred, batch_y.reshape(-1).long())
loss_f_i = loss_f_i / list(batch_y.size())[0]
loss = loss_f_i
optimizer.zero_grad()
loss.backward()
optimizer.step()
for name, param in model.named_parameters():
if ".p" in name and param.requires_grad:
reg = se_threshold
strength = reg * learning_rate
param.data = (param.data - strength) * (param.data >= strength) + (param.data + strength) * (
param.data <= -strength)
for name, param in model.named_parameters():
if ".p" not in name and param.requires_grad:
model.state_dict()[name] -= learning_rate * finetune_proximal * (
model.state_dict()[name] - gpu_org_weights[name] )
epoch_loss += loss.item() * list(batch_y.size())[0]
if print_verbose and (e) % print_per == 0:
sum_number = 0.1
non_zero = 0
sum_number2 = 0.1
non_zero2 = 0
for name, param in model.named_parameters():
if ".p" in name:
sum_number += torch.numel(param)
non_zero += torch.count_nonzero(param)
# print("name{} grad:{}".format(name, torch.count_nonzero(param.grad)/torch.numel(param.grad)) )
loss_train, acc_train = get_acc_loss(train_x, train_y, model, dataset_name, device, 0)
print(
"Epoch %3d, Training Accuracy: %.4f, Loss: %.4f, LR: %.4f, p_Density %.6f, w_density %.6f, p-Norm %.6f w-Norm %.6f" % (
e + 1, acc_train, loss_train, learning_rate, non_zero / sum_number, non_zero2/sum_number2,
sum([torch.norm(param.data)** 2 for name, param in model.named_parameters() if ".p" in name and "fc" not in name and "linear" not in name and "bn" not in name and "shortcut.1" not in name ]),
sum([torch.norm(param.data) ** 2 for name, param in model.named_parameters() if ".w" in name])),
flush=True)
model.train()
return model
def train_model_fedSLR(model, model_func, alpha_coef, concat_w, concat_mu, train_x, train_y,
learning_rate, batch_size, epoch, print_per,
weight_decay, dataset_name, sch_step, sch_gamma,se_threshold, device, client_num, print_verbose=True, mode=None):
n_train = train_x.shape[0]
train_gen = data.DataLoader(Dataset(train_x, train_y, train=True, dataset_name=dataset_name), batch_size=batch_size,
shuffle=True)
loss_fn = torch.nn.CrossEntropyLoss(reduction='mean')
start_time1 = time.time()
concat_w = concat_w.to(device)
concat_mu = concat_mu.to(device)
model.train()
model.to(device)
switch_training_mode(model, "only_w")
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=learning_rate,
weight_decay= alpha_coef+weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=sch_step, gamma=sch_gamma)
for e in range(epoch):
# Training
epoch_loss = 0
train_gen_iter = train_gen.__iter__()
for i in range(int(np.ceil(n_train / batch_size))):
batch_x, batch_y = train_gen_iter.__next__()
batch_x = batch_x.to(device)
batch_y = batch_y.to(device)
y_pred = model(batch_x)
# print(model)
# print(batch_y.reshape(-1).long(), flush=True)
# print(y_pred.shape)
loss_f_i = loss_fn(y_pred, batch_y.reshape(-1).long())
local_par_list = None
for name, param in model.named_parameters():
if ".w" in name:
if not isinstance(local_par_list, torch.Tensor):
# Initially nothing to concatenate
local_par_list = param.reshape(-1)
else:
local_par_list = torch.cat((local_par_list, param.reshape(-1)), 0)
# print(torch.norm(local_par_list), flush=True)
loss = loss_f_i + torch.sum(local_par_list * (-alpha_coef*concat_w - concat_mu))
# loss = loss_f_i+weight_decay/2*torch.norm(local_par_list)**2
epoch_loss += loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss /= int(np.ceil(n_train / batch_size))
if print_verbose and (e) % print_per == 0:
sum_number = 0
non_zero = 0
for name, param in model.named_parameters():
if ".p" in name:
sum_number += torch.numel(param)
non_zero += torch.count_nonzero(param)
model.train()
scheduler.step()
# Freeze model
for params in model.parameters():
params.requires_grad = False
model.eval()
end_time1 = time.time()
time1 = end_time1 - start_time1
print("elapse time {}".format(time1),flush=True)
return model