|
85 | 85 | _update_init_kwargs_with_connected_pipeline,
|
86 | 86 | load_sub_model,
|
87 | 87 | maybe_raise_or_warn,
|
88 |
| - model_has_device_map, |
89 | 88 | variant_compatible_siblings,
|
90 | 89 | warn_deprecated_model_variant,
|
91 | 90 | )
|
@@ -407,16 +406,6 @@ def module_is_offloaded(module):
|
407 | 406 |
|
408 | 407 | return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)
|
409 | 408 |
|
410 |
| - # device-mapped modules should not go through any device placements. |
411 |
| - device_mapped_components = [ |
412 |
| - key for key, component in self.components.items() if model_has_device_map(component) |
413 |
| - ] |
414 |
| - if device_mapped_components: |
415 |
| - raise ValueError( |
416 |
| - "The following pipeline components have been found to use a device map: " |
417 |
| - f"{device_mapped_components}. This is incompatible with explicitly setting the device using `to()`." |
418 |
| - ) |
419 |
| - |
420 | 409 | # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
|
421 | 410 | pipeline_is_sequentially_offloaded = any(
|
422 | 411 | module_is_sequentially_offloaded(module) for _, module in self.components.items()
|
@@ -1013,16 +1002,6 @@ def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[t
|
1013 | 1002 | The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
|
1014 | 1003 | default to "cuda".
|
1015 | 1004 | """
|
1016 |
| - # device-mapped modules should not go through any device placements. |
1017 |
| - device_mapped_components = [ |
1018 |
| - key for key, component in self.components.items() if model_has_device_map(component) |
1019 |
| - ] |
1020 |
| - if device_mapped_components: |
1021 |
| - raise ValueError( |
1022 |
| - "The following pipeline components have been found to use a device map: " |
1023 |
| - f"{device_mapped_components}. This is incompatible with `enable_model_cpu_offload()`." |
1024 |
| - ) |
1025 |
| - |
1026 | 1005 | is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
|
1027 | 1006 | if is_pipeline_device_mapped:
|
1028 | 1007 | raise ValueError(
|
@@ -1125,16 +1104,6 @@ def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Un
|
1125 | 1104 | The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
|
1126 | 1105 | default to "cuda".
|
1127 | 1106 | """
|
1128 |
| - # device-mapped modules should not go through any device placements. |
1129 |
| - device_mapped_components = [ |
1130 |
| - key for key, component in self.components.items() if model_has_device_map(component) |
1131 |
| - ] |
1132 |
| - if device_mapped_components: |
1133 |
| - raise ValueError( |
1134 |
| - "The following pipeline components have been found to use a device map: " |
1135 |
| - f"{device_mapped_components}. This is incompatible with `enable_sequential_cpu_offload()`." |
1136 |
| - ) |
1137 |
| - |
1138 | 1107 | if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
1139 | 1108 | from accelerate import cpu_offload
|
1140 | 1109 | else:
|
|
0 commit comments