-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathvgg.py
64 lines (52 loc) · 2.26 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from datetime import datetime
import math
import time
import numpy as np
import dataset
import tensorflow.python.platform
import tensorflow as tf
import layers as L
def build(input_tensor, n_classes=1000, rgb_mean=None, training=True):
# assuming 224x224x3 input_tensor
# define image mean
if rgb_mean is None:
rgb_mean = np.array([116.779, 123.68, 103.939], dtype=np.float32)
mu = tf.constant(rgb_mean, name="rgb_mean")
keep_prob = 0.5
# subtract image mean
net = tf.sub(input_tensor, mu, name="input_mean_centered")
# block 1 -- outputs 112x112x64
net = L.conv(net, name="conv1_1", kh=3, kw=3, n_out=64)
net = L.conv(net, name="conv1_2", kh=3, kw=3, n_out=64)
net = L.pool(net, name="pool1", kh=2, kw=2, dw=2, dh=2)
# block 2 -- outputs 56x56x128
net = L.conv(net, name="conv2_1", kh=3, kw=3, n_out=128)
net = L.conv(net, name="conv2_2", kh=3, kw=3, n_out=128)
net = L.pool(net, name="pool2", kh=2, kw=2, dh=2, dw=2)
# # block 3 -- outputs 28x28x256
net = L.conv(net, name="conv3_1", kh=3, kw=3, n_out=256)
net = L.conv(net, name="conv3_2", kh=3, kw=3, n_out=256)
net = L.pool(net, name="pool3", kh=2, kw=2, dh=2, dw=2)
# block 4 -- outputs 14x14x512
net = L.conv(net, name="conv4_1", kh=3, kw=3, n_out=512)
net = L.conv(net, name="conv4_2", kh=3, kw=3, n_out=512)
net = L.conv(net, name="conv4_3", kh=3, kw=3, n_out=512)
net = L.pool(net, name="pool4", kh=2, kw=2, dh=2, dw=2)
# block 5 -- outputs 7x7x512
net = L.conv(net, name="conv5_1", kh=3, kw=3, n_out=512)
net = L.conv(net, name="conv5_2", kh=3, kw=3, n_out=512)
net = L.conv(net, name="conv5_3", kh=3, kw=3, n_out=512)
net = L.pool(net, name="pool5", kh=2, kw=2, dw=2, dh=2)
# flatten
flattened_shape = np.prod([s.value for s in net.get_shape()[1:]])
net = tf.reshape(net, [-1, flattened_shape], name="flatten")
# fully connected
net = L.fully_connected(net, name="fc6", n_out=4096)
net = tf.nn.dropout(net, keep_prob)
net = L.fully_connected(net, name="fc7", n_out=4096)
net = tf.nn.dropout(net, keep_prob)
net = L.fully_connected(net, name="fc8", n_out=n_classes)
return net
if __name__ == '__main__':
x = tf.placeholder(tf.float32, [10, 224, 224, 3])
net = build(x)