-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathImageDataset.py
54 lines (44 loc) · 1.66 KB
/
ImageDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from PIL import Image
from glob import glob
class DeNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
for ten, mu, sigma in zip(tensor, self.mean, self.std):
ten.mul_(sigma).add_(mu)
return tensor
class ImageDataset(Dataset):
def __init__(self, flag, root_dir, data_range=(0, 100)):
self.flag = flag
self.img_names = glob(os.path.join(root_dir, "*.jpg"))[data_range[0]:data_range[1]]
self.root_dir = root_dir
print("load " + flag + " dataset start")
print(" from: %s" % root_dir)
print(" range: [%d, %d)" % (data_range[0], data_range[1]))
print("Finished loading dataset")
def __len__(self):
return len(self.img_names)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img = Image.open(self.img_names[idx]).convert("RGB")
if self.flag == 'train':
transform = transforms.Compose([
transforms.Resize(512),
transforms.RandomCrop(256),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
return transform(img)
else:
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
return transform(img)