forked from zzzxxxttt/pytorch_simple_CenterNet_45
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprofiler.py
304 lines (257 loc) · 12.6 KB
/
profiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch
# https://pytorch.org/docs/1.1.0/autograd.html << profiler
PROFILERS = []
import os
import sys
import time
import argparse
import copy
import tqdm
sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'lib'))
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
# os.environ["CUDA_VISIBLE_DEVICES"] = '0'
import numpy as np
import torch.nn as nn
import torch.utils.data
import torch.distributed as dist
from nets.recurrent_hourglass import get_hourglass
from nets.resdcn import get_pose_net
from utils.utils import _tranpose_and_gather_feature_t, _tranpose_and_gather_feature, load_model
from utils.image import transform_preds
from utils.losses import _neg_loss_t, _reg_loss_t
from utils.summary import create_summary, create_logger, create_saver, DisablePrint
from utils.post_process import ctdet_decode
from utils.dataloader import CSVDataset, collater
COCO_STATS = ["AP.50:.95","AP@.50","AP@.75","AP_small","AP_medium","AP_large",
"AR_1","AR_10","AR_100","AR_100_small","AR_100_medium","AR_100_large",]
STATS2SAVE = ["AP.50:.95","AP@.50","AP@.75","AR_1","AR_10","AR_100"]
HW = (240, 304)
PROPH_STRUCTURED_ARRAY = [('ts', '<u8'), ('x', '<f4'), ('y', '<f4'), ('w', '<f4'), ('h', '<f4'), ('class_id', 'u1'), ('class_confidence', '<f4'), ('track_id', '<u4')]
# Training settings
parser = argparse.ArgumentParser(description='simple_centernet45')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--dist', action='store_true')
parser.add_argument('--root_dir', type=str, default='./')
parser.add_argument('--data_dir', type=str, default="/tmp2/igor/EV/Dataset/Automotive/")
parser.add_argument('--log_name', type=str, default='test')
parser.add_argument('--pretrain_name', type=str, default='pretrain')
parser.add_argument('--dataset', type=str, default='CSVDataset', choices=['CSVDataset'])
parser.add_argument('--train_csv_file', type=str)
parser.add_argument('--val_csv_file', type=str)
parser.add_argument('--class_list_file', type=str)
parser.add_argument('--trim_to_shortest', action="store_true")
parser.add_argument('--delta_t', type=int)
parser.add_argument('--frames_per_batch', type=int)
parser.add_argument('--bins', type=int)
parser.add_argument('--arch', type=str, default='small_hourglass')
parser.add_argument('--img_h', type=int, default=240)
parser.add_argument('--img_w', type=int, default=304)
parser.add_argument('--split_ratio', type=float, default=1.0)
parser.add_argument('--lr', type=float, default=5e-4)
parser.add_argument('--lr_step', type=str, default='90,120')
parser.add_argument('--batch_size', type=int, default=48)
parser.add_argument('--num_epochs', type=int, default=140)
# parser.add_argument('--test_topk', type=int, default=100)
parser.add_argument('--log_interval', type=int, default=100)
parser.add_argument('--val_interval', type=int, default=5)
parser.add_argument('--num_workers', type=int, default=2)
cfg = parser.parse_args()
os.chdir(cfg.root_dir)
cfg.log_dir = os.path.join(cfg.root_dir, 'logs', cfg.log_name)
cfg.ckpt_dir = os.path.join(cfg.root_dir, 'ckpt', cfg.log_name)
cfg.pretrain_dir = os.path.join(cfg.root_dir, 'ckpt', cfg.pretrain_name, 'checkpoint.t7')
os.makedirs(cfg.log_dir, exist_ok=True)
os.makedirs(cfg.ckpt_dir, exist_ok=True)
cfg.lr_step = [int(s) for s in cfg.lr_step.split(',')]
def main():
print(cfg)
torch.manual_seed(317)
torch.backends.cudnn.benchmark = True # disable this if OOM at beginning of training
num_gpus = torch.cuda.device_count()
if cfg.dist:
raise NotImplementedError
cfg.device = torch.device('cuda:%d' % cfg.local_rank)
torch.cuda.set_device(cfg.local_rank)
dist.init_process_group(backend='nccl', init_method='env://',
world_size=num_gpus, rank=cfg.local_rank)
else:
cfg.device = torch.device('cuda')
print(f"Device cuda")
print('Setting up data...')
with torch.autograd.profiler.emit_nvtx() as prof_datasets:
if cfg.dataset == "CSVDataset":
Dataset = CSVDataset
train_cfg = {"csv_file": cfg.train_csv_file, "class_list": cfg.class_list_file,
"batch_size": cfg.batch_size, "data_root": cfg.data_dir,
"trim_to_shortest": cfg.trim_to_shortest, "delta_t": cfg.delta_t,
"frames_per_batch": cfg.frames_per_batch, "bins": cfg.bins,
"hw" : HW}
val_cfg = copy.deepcopy(train_cfg)
val_cfg["csv_file"] = cfg.val_csv_file
val_cfg["val"] = True
val_cfg["trim_to_shortest"] = False
val_cfg["batch_size"] = 1
val_cfg["frames_per_batch"] = cfg.frames_per_batch * cfg.batch_size # XXX ?
else:
raise NotImplementedError
train_dataset = Dataset(**train_cfg)
# train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset,
# num_replicas=num_gpus,
# rank=cfg.local_rank)
# XXX
train_loader = torch.utils.data.DataLoader(train_dataset, collate_fn=collater, batch_size=train_cfg["batch_size"], shuffle=False)
val_dataset = Dataset(**val_cfg)
val_loader = torch.utils.data.DataLoader(val_dataset, collate_fn=collater, batch_size=val_cfg["batch_size"], shuffle=False)
PROFILERS.append([prof_datasets, "prof_datasets"])
print('Creating model...')
with torch.autograd.profiler.emit_nvtx() as prof_create_model:
if 'hourglass' in cfg.arch:
model = get_hourglass(cfg.arch, cfg.bins*2, train_dataset.num_classes)
elif 'resdcn' in cfg.arch:
model = get_pose_net(num_layers=int(cfg.arch.split('_')[-1]), num_classes=train_dataset.num_classes)
else:
raise NotImplementedError
PROFILERS.append([prof_create_model, "prof_create_model"])
if cfg.dist:
raise NotImplementedError
# model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = model.to(cfg.device)
model = nn.parallel.DistributedDataParallel(model,
device_ids=[cfg.local_rank, ],
output_device=cfg.local_rank)
else:
model = nn.DataParallel(model).to(cfg.device)
if os.path.isfile(cfg.pretrain_dir):
model = load_model(model, cfg.pretrain_dir)
optimizer = torch.optim.Adam(model.parameters(), cfg.lr)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, cfg.lr_step, gamma=0.1)
def train(epoch):
print('\n Epoch: %d' % epoch)
model.train()
tic = time.perf_counter()
with torch.autograd.profiler.emit_nvtx() as prof_loader:
for batch_idx, batch in enumerate(train_loader):
pass
break
PROFILERS.append([prof_loader, "prof_loader"])
for batch_idx, batch in enumerate(train_loader):
batch['event'] = batch['event'].to(device=cfg.device, non_blocking=True)
with torch.autograd.profiler.emit_nvtx() as prof_inference:
outputs = model(batch['event'])
PROFILERS.append([prof_inference, "prof_inference"])
outs, hiddens = outputs
hmap, regs, w_h_ = zip(*outs)
# [print(batch[key].size()) for key in ['event','inds_t', 'hmap_t', 'regs_t', 'w_h_t']]
# print([r.size() for r in regs])
# print([r.size() for r in hmap])
# print([r.size() for r in w_h_])
batch['inds_t'] = batch['inds_t'].to(device=cfg.device, non_blocking=True)
with torch.autograd.profiler.emit_nvtx() as prof_tranpose_and_gather_feature_t_regs:
regs = [_tranpose_and_gather_feature_t(r, batch['inds_t']) for r in regs]
PROFILERS.append([prof_tranpose_and_gather_feature_t_regs, "prof_tranpose_and_gather_feature_t_regs"])
with torch.autograd.profiler.emit_nvtx() as prof_tranpose_and_gather_feature_t_w_h_:
w_h_ = [_tranpose_and_gather_feature_t(r, batch['inds_t']) for r in w_h_]
PROFILERS.append([prof_tranpose_and_gather_feature_t_w_h_, "prof_tranpose_and_gather_feature_t_w_h_"])
with torch.autograd.profiler.emit_nvtx() as prof_hmap_loss:
hmap_loss = _neg_loss_t(hmap, batch['hmap_t'].to(device=cfg.device, non_blocking=True))
PROFILERS.append([prof_hmap_loss, "prof_hmap_loss"])
with torch.autograd.profiler.emit_nvtx() as prof_reg_loss:
reg_loss = _reg_loss_t(regs, batch['regs_t'].to(device=cfg.device, non_blocking=True), batch['ind_masks_t'].to(device=cfg.device, non_blocking=True))
PROFILERS.append([prof_reg_loss, "prof_reg_loss"])
with torch.autograd.profiler.emit_nvtx() as prof_w_h_loss:
w_h_loss = _reg_loss_t(w_h_, batch['w_h_t'].to(device=cfg.device, non_blocking=True), batch['ind_masks_t'].to(device=cfg.device, non_blocking=True))
PROFILERS.append([prof_w_h_loss, "prof_w_h_loss"])
loss = hmap_loss + 1 * reg_loss + 0.1 * w_h_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % cfg.log_interval == 0:
duration = time.perf_counter() - tic
tic = time.perf_counter()
print('[%d/%d-%d/%d] ' % (epoch, cfg.num_epochs, batch_idx, len(train_loader)) +
' hmap_loss= %.5f reg_loss= %.5f w_h_loss= %.5f total_loss = %.5f' %
(hmap_loss.item(), reg_loss.item(), w_h_loss.item(), loss.item()) +
' (%d samples/sec)' % (cfg.batch_size * cfg.log_interval / duration))
step = len(train_loader) * epoch + batch_idx
break
return
def val_map(epoch):
print('\n Val@Epoch: %d' % epoch)
model.eval()
torch.cuda.empty_cache()
max_per_image = 100
results = {}
with torch.no_grad():
detections = {}
for inputs in tqdm.tqdm(val_loader):
assert len(inputs["file_path"]) == 1
event_file_path = inputs["file_path"][0]
if event_file_path in list(detections.keys()): # XXX
pass
outputs = model(inputs['event'].to(cfg.device))
outs, _ = outputs
hmap_t, regs_t, w_h_t = zip(*outs)
with torch.autograd.profiler.emit_nvtx() as prof_decode_val:
for frame_idx, (hmap, regs, w_h_) in enumerate(zip(hmap_t[-1],regs_t[-1],w_h_t[-1])):
dets = ctdet_decode(hmap, regs, w_h_)
dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2])[0]
dets[:, :2] = transform_preds(dets[:, 0:2],
inputs['center'][0],
inputs['scale'][0],
(inputs['fmap_w'][0], inputs['fmap_h'][0]))
dets[:, 2:4] = transform_preds(dets[:, 2:4],
inputs['center'][0],
inputs['scale'][0],
(inputs['fmap_w'][0], inputs['fmap_h'][0]))
scores = dets[:, 4]
dets = dets[dets[:, 4].argsort()[::-1]]
scores = dets[:, 4]
if len(scores) > max_per_image:
dets = dets[:max_per_image]
try:
detections[event_file_path].append(dets)
except KeyError:
assert inputs["info"][frame_idx]["first_segment"]
detections[event_file_path] = [dets]
break
PROFILERS.append([prof_decode_val, "prof_decode_val"])
proph_bboxes = {}
with torch.autograd.profiler.emit_nvtx() as prof_cn2prophesee_style:
for key in detections.keys():
# n_dets = sum([len(d) for d in detections[key]])
entries = []
for dets_idx, dets in enumerate(detections[key]):
t = dets_idx * val_dataset.delta_t
assert t == int(t)
t = int(t)
X = dets[:,0]
Y = dets[:,1]
W = dets[:,0] + dets[:,2]
H = dets[:,1] + dets[:,3]
Class_confidence = dets[:,4]
Class_id = dets[:,5]
track_id = 0
for x, y, w, h, class_id, class_confidence in zip(X, Y, W, H, Class_id, Class_confidence):
entries.append((t, x, y, w, h, class_id, class_confidence, track_id))
proph_bboxes[key] = np.array(entries, dtype=PROPH_STRUCTURED_ARRAY)
PROFILERS.append([prof_cn2prophesee_style, "prof_cn2prophesee_style"])
eval_results = val_dataset.run_eval(proph_bboxes)
for val, name in zip(eval_results, COCO_STATS):
print(f"[VAL {epoch}]{name} : {val}")
if name in STATS2SAVE:
pass
print('Starting training...')
for epoch in range(1, cfg.num_epochs + 1):
# train_sampler.set_epoch(epoch)
train(epoch)
if cfg.val_interval > 0 and epoch % cfg.val_interval == 0:
val_map(epoch)
pass
lr_scheduler.step(epoch) # move to here after pytorch1.1.0
pass
if __name__ == '__main__':
with DisablePrint(local_rank=cfg.local_rank):
main()
for (prof, name) in PROFILERS:
print(name)
print(prof)