-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_functions.py
73 lines (61 loc) · 1.77 KB
/
visualize_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""Utility functions."""
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import numpy as np
import cv2
from sklearn.preprocessing import StandardScaler
from tensorflow.keras import Model
from tensorflow.keras.layers import Conv3D, MaxPool3D, ConvLSTM2D, Flatten, Dense
from tensorflow.keras.optimizers import RMSprop
def rgb2gray(rgb):
return np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
def normalize_data(np_data):
scaler = StandardScaler()
scaled_images = np_data.reshape(-1, 30, 64, 64, 1)
return scaled_images
class Conv3DModel(Model):
def __init__(self, n_classes):
super(Conv3DModel, self).__init__()
# convolutions
self.conv1 = Conv3D(
32, (3, 3, 3),
activation='relu',
data_format='channels_last',
name='conv1'
)
self.pool1 = MaxPool3D(
pool_size=(2, 2, 2),
data_format='channels_last'
)
self.conv2 = Conv3D(
64, (3, 3, 3),
activation='relu',
data_format='channels_last',
name='conv1'
)
self.pool2 = MaxPool3D(
pool_size=(2, 2, 2),
data_format='channels_last'
)
self.convLSTM = ConvLSTM2D(40, (3, 3))
# flatten
self.flatten = Flatten(name='flatten')
# dense layers
self.d1 = Dense(
128, activation='relu',
name='d1'
)
self.out = Dense(
n_classes,
activation='softmax',
name='output'
)
def call(self, x):
x = self.conv1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.pool2(x)
x = self.convLSTM(x)
x = self.flatten(x)
x = self.d1(x)
return self.out(x)