-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_correntropy.py
70 lines (55 loc) · 2.08 KB
/
train_correntropy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import sys
import warnings
import argparse
import numpy as np
import pandas as pd
from data.data import process_data
from model import model
from keras.models import Model
from keras.callbacks import EarlyStopping
from keras.models import load_model
from correntropy.correntropy import correntropy
from keras.utils.generic_utils import get_custom_objects
from correntropy.correntropy import correntropy
loss = correntropy
get_custom_objects().update({"correntropy": loss})
warnings.filterwarnings("ignore")
def train_model(model, X_train, y_train, name, config, dataset):
"""train
train a single model.
# Arguments
model: Model, NN model to train.
X_train: ndarray(number, lags), Input data for train.
y_train: ndarray(number, ), result data for train.
name: String, name of model.
config: Dict, parameter for train.
"""
model.compile(loss=correntropy, optimizer="adam", metrics=['mape'])
# early = EarlyStopping(monitor='val_loss', patience=30, verbose=0, mode='auto')
hist = model.fit(
X_train, y_train,
batch_size=config["batch"],
epochs=config["epochs"],
validation_split=0.05,
shuffle=False)
model.save('tcclstmlsm.h5')
df = pd.DataFrame.from_dict(hist.history)
df.to_csv('tcclstmlsm.csv', encoding='utf-8', index=False)
def main(model_con, dataset, batch, epoch):
if not os.path.exists(PATH1 + os.sep + dataset.split(".")[0]):
os.makedirs(PATH1 + os.sep + dataset.split(".")[0])
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
default=model_con,
help="Model to train.")
args = parser.parse_args()
lag = 288
config = {"batch": batch, "epochs": epoch}
X_train, y_train, _, _, _ = process_data(FILE1, FILE2, lag) #input, process data
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
if args.model == 'tcclstmlsm':
m = load_model('tcclstmlsm.h5')
#m = model.get_tcnlstm([288, 64, 64, 1])
train_model(m, X_train, y_train, args.model, config, dataset)