-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathage.py
63 lines (46 loc) · 1.7 KB
/
age.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Importing dependencies
import pandas as pd
import numpy as np
import cv2
import os
from sklearn.model_selection import train_test_split
# Loading dataset
meta = pd.read_csv('meta.csv')
# Dropping gender column
meta = meta.drop(['gender'], axis=1)
# Filtaring dataset
meta = meta[meta['age'] >= 0]
meta = meta[meta['age'] <= 101]
# Converting into numpy array
meta = meta.values
# Spliting dataset into training and testing set
D_train, D_test = train_test_split(meta, test_size=0.2, random_state=42)
# Making the directory structure
for i in range(102):
output_dir_train_male = 'dataset/age/train/' + str(i)
output_dir_train_female = 'dataset/age/train/' + str(i)
if not os.path.exists(output_dir_train_male):
os.makedirs(output_dir_train_male)
if not os.path.exists(output_dir_train_female):
os.makedirs(output_dir_train_female)
output_dir_test_male = 'dataset/age/test/' + str(i)
output_dir_test_female = 'dataset/age/test/' + str(i)
if not os.path.exists(output_dir_test_male):
os.makedirs(output_dir_test_male)
if not os.path.exists(output_dir_test_female):
os.makedirs(output_dir_test_female)
# Finally making the training and testing set
counter = 0
for image in D_train:
img = cv2.imread(image[1], 1)
img = cv2.resize(img, (128,128))
cv2.imwrite('dataset/age/train/' + str(image[0]) + '/' + str(counter) + '.jpg', img)
print('--('+str(counter)+')Processing--')
counter += 1
counter = 0
for image in D_test:
img = cv2.imread(image[1], 1)
img = cv2.resize(img, (128,128))
cv2.imwrite('dataset/age/test/' + str(image[0]) + '/' + str(counter) + '.jpg', img)
print('--('+str(counter)+')Processing--')
counter += 1