diff --git a/.gitignore b/.gitignore
index a0ba551..2276e64 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,6 +1,4 @@
-processedData/
-unprocessedData/
-experiment.py
+.ipynb_checkpoints/
meta.csv
imdb_crop/
wiki_crop/
diff --git a/Age and Gender Distribution.ipynb b/Age and Gender Distribution.ipynb
new file mode 100644
index 0000000..06b457f
--- /dev/null
+++ b/Age and Gender Distribution.ipynb
@@ -0,0 +1,233 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Importing dependencies\n",
+ "\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = pd.read_csv('meta.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " gender | \n",
+ " path | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 42 | \n",
+ " male | \n",
+ " imdb_crop/82/nm0005282_rm878739712_1966-10-31_... | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 32 | \n",
+ " female | \n",
+ " imdb_crop/76/nm1411676_rm2490280960_1979-6-24_... | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 29 | \n",
+ " male | \n",
+ " imdb_crop/83/nm1145983_rm1406371840_1979-7-31_... | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 22 | \n",
+ " female | \n",
+ " imdb_crop/02/nm3240202_rm2934473728_1986-2-28_... | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 78 | \n",
+ " female | \n",
+ " imdb_crop/12/nm0326412_rm1823643648_1926-9-7_2... | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age gender path\n",
+ "0 42 male imdb_crop/82/nm0005282_rm878739712_1966-10-31_...\n",
+ "1 32 female imdb_crop/76/nm1411676_rm2490280960_1979-6-24_...\n",
+ "2 29 male imdb_crop/83/nm1145983_rm1406371840_1979-7-31_...\n",
+ "3 22 female imdb_crop/02/nm3240202_rm2934473728_1986-2-28_...\n",
+ "4 78 female imdb_crop/12/nm0326412_rm1823643648_1926-9-7_2..."
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['age', 'gender', 'path'], dtype='object')"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(224840, 3)"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEICAYAAAAdjPDnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAH59JREFUeJzt3XucXGWd5/HPl4RwkUsSEhGSSOIYhw2sLhAB0VUkDiQoJo6XV1hHAkajA3gZr6Dr4HLxMuMuyoooI5GgvAgYZYgaDJHLuI4ToBEFAiJtAJNMIE0SboJg8Ld/PE/roajqru6q7qfSfN+vV736nOdyzq9OPVW/c049qSgiMDMzK2WH0gGYmdnzmxORmZkV5URkZmZFORGZmVlRTkRmZlaUE5GZmRXVcYlI0mclfad0HNsjSUdKWl86jlZJeoukdZIel3TQMO530MdP0tclfabdMW2PJJ0o6Wel49heeNwVSET5w6X38SdJT1bW3znc8QyngSbZdidlSUdIuknSY5Juk/SaSt2R+fWovj4LKvWnSuqS9JSki2u2O0bSMkn3SQpJR9bUv17S9ZIekXRfE6F+CTg1InaLiFtbetLDJCLeHxFnlY5jeyDpQkl35/F2Yk3dAkm3SHpU0npJ/yRpdKX+v0i6Lo+lbklvqdS9s2b8PpHH4yG5/uOS7sjj/15JH6/Zd8P3R6caKeNu2BNR/nDZLSJ2A34HHFcpu7Sd+6oO4HZT0nFXlI1IGg/8APhnYCzwT8APJI2rNPvP6usTEUuqdcDZwOIGu/gZ8HfAA3Xqfp/7fbxOXT37AWuabGvbn18BJwO/qFO3K/BhYAJwGDAL+Bj8+f18FfBDYDywCPiOpJcBRMSlNZ8vJwNrK/sRcAIwDpgNnCppft52M+8PGyoRUewB3Ae8oabss8AVwCXAY6QPpJmV+n2B7wE9wL3AB2v6LgO+AzwKvIeUbE8Dfgtsztse3yCecaRB3gNszcuTK/U3AOcA/w48CbwU2BO4CNgIbCB9WI+qs+3ZwNPAH4HHgV9Vns9yYAvQDby3n/YnAXflY7MWeF9lH0cC6xs8tzcBa2rKfgMs7K9vTZ+zgYv7qF8PHNmg7g3AfX303Sk/1yAlr982+Zp/N7/mjwG3Ay8DTgc2AeuAoyvtmz5+fe23TuwXA2dXtwN8IsewEZgHHJuP+RbgU5W+hwL/ATyc234VGFOpPxq4G3gE+Brwb8B7KvXvzs9pK7AS2C+XCzg3x/BoPjYHNoi/3+MCfLTyfE6q1O9FGsOPAjcBZwE/a2Is/Qw4sZ82HwF+kJcPzONDlfprgLMa9L0eOKOPbZ8H/N9m3h91+nrctWHc9T469Yz+zcBS0pnJctIBIl+B/IB0RjWJdLb0YUnHVPrOJSWjscClwAdIL8brSC/wVuD8BvvdAfgW6Yz8xaRk89WaNu8inYntDtxPGgjbSEnpINKL957aDUfEj4HPAZdHOmN7Ra5aSho8+wJvAz4n6ag+2m8ivWn2IA3ucyUd3OD51FKd9QMr6y+U9GC+bXGupBc0ud22iIinIp3JArwiIv6qydf8OODbpBOJW0lvih1y+zOBb1TaNnX8mtxvX14E7Jz7/iPwL6QrxkOA/w58RtK03PYZ4B9IVwGvyvs6OccxgTSeTyd94N8NHFGJcy7wKeBvgYnA/wMuy9VHA68lfUDuCbyDdDJWT3/H5UV5G5OAhcD5lauF84E/APuQPpze3dQRas5r6fvquHYMp0Jpv9z3krqdJJFeh+q2+3t/1PK4a33cJf2dtQzlg8ZXRD+prM8AnszLhwG/q2l/OvCtSt+f1tTfBcyqrO9DusoY3UR8/w3YWlm/ATizsr438BSwS6XseOD6Ps6ivlNZn5IHw+6Vss+Trzhq2zfY5r8CH6p3ZlXTbi/Smc/xwI7AAuBPwDdy/Yvysd4BmAb8tLeuZjtDdkVUaRfASwfwmq+q1B1HOmseldd3z9sbO5Dj199+62znYp59ZvpknRgOq7S/BZjXYFsfBq7MyycA/1GpE+ls+z15/WoqZ+359XuCdDJ1FOlM+HBgh2bflw2Oy5NU3jOkD9bDgVGk99P+lbrP0YYrIlJCWw9MyOs7kq4mPpGXjybdNVhZp+9ngBv62Pb/In3Y79TM+6NOf4+7No67Tr0iqn7P8ASwc74/vB+wr6SHex+krLx3pf26mm3tB1xZaX8X6cN/75p2SNpV0jck3S/pUdKH8VhJoxpsfz/SoN1Y2f43gBc2+Tz3BbZExGOVsvtJZzN1SZojabWkLXl/x5LOaPoUEZtJV4sfAR4k3fr7CemNTkQ8EBF3RsSfIuJe0pv9rU0+j6HUzGv+YGX5SeChiHimsg6wGwzo+DWz375srhNDbZy9Mb1M0g8lPZDH3ecqMe1LZcxFetdXZ1jtB3ylEuMW0ofGpIi4jnRFfz6wKU8S2KNesE0cl80Rsa2y/kSOfyIwmme/L+5vfFiaI2ke6aRsTkQ8BBARfyTd3Xgj6TPio6Rb7fVmnJ0ALKlTjqRTc/0bI+KpvO0+3x8NeNy1OO56dWoiamQdcG9EjK08do+IYyttok6fOTV9do6IDXW2/1Hgr0lnEHuQLi/h2Zfs1e2vI10RTahse4+IOKBB/LWx/ScwXtLulbIXk75rek57STuR7h1/Cdg7IsYCK3juLYX6O4/4t4h4ZUSMJ91i3J90T79RrJ0wPpp5zZsywOPXtv024QLg18D0PO4+VYlpIzC58hxUXc9xvq8mzl0i4ucAEXFeRBxCutp9GXUmjLQ4rnpIt6anVMpe3ES/hiTNJt1SOi4ibq/WRcRtEfG6iNgrIo4BXkLNGJb0atIH6bI623436TvjWRHxrCQzwPfHQJ6Px10/E5U64YNmIG4CHpP0SUm7SBol6UBJr+yjz9eBc/I9YyRNzPc369mddMbwcJ5Fc0ZfwUTERtKXpf9b0h6SdpD0V5Je16DLg8DU3tl2EbEO+DnweUk7S3o56f77d+q1B8aQvtDvAbZJmkO6PdEUSQdJ2jGfnXwJWBcRK3Pd6yXtp2QK8AXSDKXevqMl7Uy6FTMqx1udVrtTrgcYk+uV63bIdTumVe0saUyTYQ/mNW9kIMevnfvtz+6kL3Ufl7Q/8PeVuh8B/1XSvHy8TyHdRu31deB0SQcASNpT0tvz8islHSZpR9Lkjz+QbjfVGvS4ymff3wc+m+8ozCDd1mpIabr/zqQPvR3zeNgh1x1F+m73rRHxnCQg6eW5/a6SPka61X5xTbMFwPdq7jSg9M9DPgf8TUSsrbPthu+PFnnc1R93f7ZdJaI86N9E+u7mXuAh4JukL8Qa+QppwsM1kh4DVpPuw9bzZWCXvN3VwI+bCOsE0kC7kzQRYhnpzVHPd/PfzZJ6p5QeD0wlXR1dSZrl85N67fMb64Ok2xFbgf+Rn1uzPkF6butyjG+p1B1ESoq/z39vz/vq9T9JSfo00pefT+ayXnfnskmkL22fJF2+Q7qyfJJ0Ftg7CeSaZgIe5GveaFtNH7927rcJH8uxPEa6Eri8EsdDwNtJ04k3k84wu0hX4kTElcAXgaX59sodwJzcfY+8va2k22WbSdOTn6UN4+pU0u2eB0hJ4Vv9tL+GNAaOAC7My713Hz5DOsYr9Jd/D3R1pe+7SGfrm0hfrv9N7+01gJzg3kH923Jnk74Lurmy7a9X6vt6fwyax139cVel/EWTmW0H8pXDeuCdEXF96Xjs+WGox912dUVk9nwk6RhJY/N3Db338VcXDstGuOEcd05EZp3vVaR/kP0QaZrwvIh4su8uZi0btnHnW3NmZlaUr4jMzKyoIftR0FImTJgQU6dOLR2Gmdl25ZZbbnkoIiaW2PeIS0RTp06lq6urdBhmZtsVSS3/IsZg+dacmZkV5URkZmZFORGZmVlRTkRmZlaUE5GZmRXlRGRmZkU5EZmZWVFORGZmVpQTkZmZFTXiflnBrFNNPe1HpUOwEe6+L7yxdAiD4isiMzMryonIzMyKciIyM7OinIjMzKwoJyIzMyvKicjMzIpyIjIzs6KciMzMrCgnIjMzK8qJyMzMinIiMjOzovpNRJIWS9ok6Y5K2T9L+rWk2yRdKWlspe50Sd2S7pZ0TKV8di7rlnRapXyapBtz+eWSxuTynfJ6d66f2q4nbWZmnaOZK6KLgdk1ZauAAyPi5cBvgNMBJM0A5gMH5D5fkzRK0ijgfGAOMAM4PrcF+CJwbkS8FNgKLMzlC4Gtufzc3M7MzEaYfhNRRPwU2FJTdk1EbMurq4HJeXkusDQinoqIe4Fu4ND86I6ItRHxNLAUmCtJwFHAstx/CTCvsq0leXkZMCu3NzOzEaQd3xG9G7g6L08C1lXq1ueyRuV7AQ9Xklpv+bO2lesfye2fQ9IiSV2Sunp6elp+QmZmNnxaSkSSPg1sAy5tTziDExEXRsTMiJg5ceLEkqGYmdkADfo/xpN0IvAmYFZERC7eAEypNJucy2hQvhkYK2l0vuqptu/d1npJo4E9c3szMxtBBnVFJGk28AngzRHxRKVqOTA/z3ibBkwHbgJuBqbnGXJjSBMalucEdj3wttx/AXBVZVsL8vLbgOsqCc/MzEaIfq+IJF0GHAlMkLQeOIM0S24nYFWeP7A6It4fEWskXQHcSbpld0pEPJO3cyqwEhgFLI6INXkXnwSWSjobuBW4KJdfBHxbUjdpssT8NjxfMzPrMP0moog4vk7xRXXKetufA5xTp3wFsKJO+VrSrLra8j8Ab+8vPjMz2775lxXMzKwoJyIzMyvKicjMzIpyIjIzs6KciMzMrCgnIjMzK8qJyMzMinIiMjOzopyIzMysKCciMzMryonIzMyKciIyM7OinIjMzKwoJyIzMyvKicjMzIpyIjIzs6KciMzMrCgnIjMzK8qJyMzMinIiMjOzopyIzMysKCciMzMryonIzMyK6jcRSVosaZOkOypl4yWtknRP/jsul0vSeZK6Jd0m6eBKnwW5/T2SFlTKD5F0e+5zniT1tQ8zMxtZmrkiuhiYXVN2GnBtREwHrs3rAHOA6fmxCLgAUlIBzgAOAw4FzqgklguA91b6ze5nH2ZmNoL0m4gi4qfAlpriucCSvLwEmFcpvySS1cBYSfsAxwCrImJLRGwFVgGzc90eEbE6IgK4pGZb9fZhZmYjyGC/I9o7Ijbm5QeAvfPyJGBdpd36XNZX+fo65X3t4zkkLZLUJamrp6dnEE/HzMxKaXmyQr6SiTbEMuh9RMSFETEzImZOnDhxKEMxM7M2G2wiejDfViP/3ZTLNwBTKu0m57K+yifXKe9rH2ZmNoIMNhEtB3pnvi0ArqqUn5Bnzx0OPJJvr60EjpY0Lk9SOBpYmeselXR4ni13Qs226u3DzMxGkNH9NZB0GXAkMEHSetLsty8AV0haCNwPvCM3XwEcC3QDTwAnAUTEFklnATfndmdGRO8EiJNJM/N2Aa7OD/rYh5mZjSD9JqKIOL5B1aw6bQM4pcF2FgOL65R3AQfWKd9cbx9mZjay+JcVzMysKCciMzMrqt9bc88nU0/7UekQzMyed3xFZGZmRTkRmZlZUU5EZmZWlBORmZkV5URkZmZFORGZmVlRTkRmZlaUE5GZmRXlRGRmZkU5EZmZWVFORGZmVpQTkZmZFeVEZGZmRTkRmZlZUU5EZmZWlBORmZkV5URkZmZFORGZmVlRTkRmZlaUE5GZmRXVUiKS9A+S1ki6Q9JlknaWNE3SjZK6JV0uaUxuu1Ne7871UyvbOT2X3y3pmEr57FzWLem0VmI1M7PONOhEJGkS8EFgZkQcCIwC5gNfBM6NiJcCW4GFuctCYGsuPze3Q9KM3O8AYDbwNUmjJI0CzgfmADOA43NbMzMbQVq9NTca2EXSaGBXYCNwFLAs1y8B5uXluXmdXD9LknL50oh4KiLuBbqBQ/OjOyLWRsTTwNLc1szMRpBBJ6KI2AB8CfgdKQE9AtwCPBwR23Kz9cCkvDwJWJf7bsvt96qW1/RpVP4ckhZJ6pLU1dPTM9inZGZmBbRya24c6QplGrAv8ALSrbVhFxEXRsTMiJg5ceLEEiGYmdkgtXJr7g3AvRHRExF/BL4PvBoYm2/VAUwGNuTlDcAUgFy/J7C5Wl7Tp1G5mZmNIK0kot8Bh0vaNX/XMwu4E7geeFtuswC4Ki8vz+vk+usiInL5/DyrbhowHbgJuBmYnmfhjSFNaFjeQrxmZtaBRvffpL6IuFHSMuAXwDbgVuBC4EfAUkln57KLcpeLgG9L6ga2kBILEbFG0hWkJLYNOCUingGQdCqwkjQjb3FErBlsvGZm1pkGnYgAIuIM4Iya4rWkGW+1bf8AvL3Bds4BzqlTvgJY0UqMZmbW2fzLCmZmVpQTkZmZFeVEZGZmRTkRmZlZUU5EZmZWlBORmZkV5URkZmZFORGZmVlRTkRmZlaUE5GZmRXlRGRmZkU5EZmZWVFORGZmVpQTkZmZFeVEZGZmRTkRmZlZUU5EZmZWlBORmZkV5URkZmZFORGZmVlRTkRmZlaUE5GZmRXlRGRmZkW1lIgkjZW0TNKvJd0l6VWSxktaJeme/HdcbitJ50nqlnSbpIMr21mQ298jaUGl/BBJt+c+50lSK/GamVnnafWK6CvAjyNif+AVwF3AacC1ETEduDavA8wBpufHIuACAEnjgTOAw4BDgTN6k1du895Kv9ktxmtmZh1m0IlI0p7Aa4GLACLi6Yh4GJgLLMnNlgDz8vJc4JJIVgNjJe0DHAOsiogtEbEVWAXMznV7RMTqiAjgksq2zMxshGjlimga0AN8S9Ktkr4p6QXA3hGxMbd5ANg7L08C1lX6r89lfZWvr1P+HJIWSeqS1NXT09PCUzIzs+HWSiIaDRwMXBARBwG/5y+34QDIVzLRwj6aEhEXRsTMiJg5ceLEod6dmZm1USuJaD2wPiJuzOvLSInpwXxbjfx3U67fAEyp9J+cy/oqn1yn3MzMRpBBJ6KIeABYJ+mvc9Es4E5gOdA7820BcFVeXg6ckGfPHQ48km/hrQSOljQuT1I4GliZ6x6VdHieLXdCZVtmZjZCjG6x/weASyWNAdYCJ5GS2xWSFgL3A+/IbVcAxwLdwBO5LRGxRdJZwM253ZkRsSUvnwxcDOwCXJ0fZmY2grSUiCLil8DMOlWz6rQN4JQG21kMLK5T3gUc2EqMZmbW2fzLCmZmVpQTkZmZFeVEZGZmRTkRmZlZUU5EZmZWlBORmZkV5URkZmZFORGZmVlRTkRmZlaUE5GZmRXlRGRmZkU5EZmZWVFORGZmVpQTkZmZFeVEZGZmRTkRmZlZUU5EZmZWlBORmZkV5URkZmZFORGZmVlRTkRmZlaUE5GZmRXlRGRmZkW1nIgkjZJ0q6Qf5vVpkm6U1C3pckljcvlOeb0710+tbOP0XH63pGMq5bNzWbek01qN1czMOk87rog+BNxVWf8icG5EvBTYCizM5QuBrbn83NwOSTOA+cABwGzgazm5jQLOB+YAM4Djc1szMxtBWkpEkiYDbwS+mdcFHAUsy02WAPPy8ty8Tq6fldvPBZZGxFMRcS/QDRyaH90RsTYingaW5rZmZjaCtHpF9GXgE8Cf8vpewMMRsS2vrwcm5eVJwDqAXP9Ibv/n8po+jcqfQ9IiSV2Sunp6elp8SmZmNpwGnYgkvQnYFBG3tDGeQYmICyNiZkTMnDhxYulwzMxsAEa30PfVwJslHQvsDOwBfAUYK2l0vuqZDGzI7TcAU4D1kkYDewKbK+W9qn0alZuZ2Qgx6CuiiDg9IiZHxFTSZIPrIuKdwPXA23KzBcBVeXl5XifXXxcRkcvn51l104DpwE3AzcD0PAtvTN7H8sHGa2ZmnamVK6JGPgkslXQ2cCtwUS6/CPi2pG5gCymxEBFrJF0B3AlsA06JiGcAJJ0KrARGAYsjYs0QxGtmZgW1JRFFxA3ADXl5LWnGW22bPwBvb9D/HOCcOuUrgBXtiNHMzDqTf1nBzMyKciIyM7OinIjMzKwoJyIzMyvKicjMzIpyIjIzs6KciMzMrCgnIjMzK8qJyMzMinIiMjOzopyIzMysKCciMzMryonIzMyKciIyM7OinIjMzKwoJyIzMyvKicjMzIpyIjIzs6KciMzMrCgnIjMzK8qJyMzMinIiMjOzopyIzMysqEEnIklTJF0v6U5JayR9KJePl7RK0j3577hcLknnSeqWdJukgyvbWpDb3yNpQaX8EEm35z7nSVIrT9bMzDpPK1dE24CPRsQM4HDgFEkzgNOAayNiOnBtXgeYA0zPj0XABZASF3AGcBhwKHBGb/LKbd5b6Te7hXjNzKwDDToRRcTGiPhFXn4MuAuYBMwFluRmS4B5eXkucEkkq4GxkvYBjgFWRcSWiNgKrAJm57o9ImJ1RARwSWVbZmY2QrTlOyJJU4GDgBuBvSNiY656ANg7L08C1lW6rc9lfZWvr1Neb/+LJHVJ6urp6WnpuZiZ2fBqORFJ2g34HvDhiHi0WpevZKLVffQnIi6MiJkRMXPixIlDvTszM2ujlhKRpB1JSejSiPh+Ln4w31Yj/92UyzcAUyrdJ+eyvson1yk3M7MRpJVZcwIuAu6KiP9TqVoO9M58WwBcVSk/Ic+eOxx4JN/CWwkcLWlcnqRwNLAy1z0q6fC8rxMq2zIzsxFidAt9Xw28C7hd0i9z2aeALwBXSFoI3A+8I9etAI4FuoEngJMAImKLpLOAm3O7MyNiS14+GbgY2AW4Oj/MzGwEGXQiioifAY3+Xc+sOu0DOKXBthYDi+uUdwEHDjZGMzPrfP5lBTMzK8qJyMzMinIiMjOzopyIzMysKCciMzMryonIzMyKciIyM7OinIjMzKwoJyIzMyvKicjMzIpyIjIzs6KciMzMrCgnIjMzK8qJyMzMinIiMjOzopyIzMysKCciMzMryonIzMyKciIyM7OinIjMzKwoJyIzMyvKicjMzIpyIjIzs6I6PhFJmi3pbkndkk4rHY+ZmbVXRyciSaOA84E5wAzgeEkzykZlZmbt1NGJCDgU6I6ItRHxNLAUmFs4JjMza6PRpQPoxyRgXWV9PXBYbSNJi4BFefVxSXcPcn8TgIcG2XcoOa6BcVwD47gGplPjQl9sKbb92hnLQHR6ImpKRFwIXNjqdiR1RcTMNoTUVo5rYBzXwDiugenUuKCzY+tLp9+a2wBMqaxPzmVmZjZCdHoiuhmYLmmapDHAfGB54ZjMzKyNOvrWXERsk3QqsBIYBSyOiDVDuMuWb+8NEcc1MI5rYBzXwHRqXNDZsTWkiCgdg5mZPY91+q05MzMb4ZyIzMysqOdNIurvp4Ik7STp8lx/o6SplbrTc/ndko4Z5rg+IulOSbdJulbSfpW6ZyT9Mj/aOomjibhOlNRT2f97KnULJN2THwuGOa5zKzH9RtLDlbohOV6SFkvaJOmOBvWSdF6O+TZJB1fqhvJY9RfXO3M8t0v6uaRXVOruy+W/lNQ1zHEdKemRymv1j5W6IfvJrybi+nglpjvyeBqf64byeE2RdH3+HFgj6UN12hQZY20TESP+QZro8FvgJcAY4FfAjJo2JwNfz8vzgcvz8ozcfidgWt7OqGGM6/XArnn573vjyuuPFzxeJwJfrdN3PLA2/x2Xl8cNV1w17T9AmuAy1MfrtcDBwB0N6o8FrgYEHA7cONTHqsm4jujdH+lntG6s1N0HTCh0vI4Eftjq69/uuGraHgdcN0zHax/g4Ly8O/CbOu/HImOsXY/nyxVRMz8VNBdYkpeXAbMkKZcvjYinIuJeoDtvb1jiiojrI+KJvLqa9G+phlorP610DLAqIrZExFZgFTC7UFzHA5e1ad8NRcRPgS19NJkLXBLJamCspH0Y2mPVb1wR8fO8Xxi+sdXM8WpkSH/ya4BxDcvYAoiIjRHxi7z8GHAX6VdnqoqMsXZ5viSiej8VVPtC/rlNRGwDHgH2arLvUMZVtZB01tNrZ0ldklZLmtemmAYS11vzbYBlknr/4XFHHK98C3MacF2leKiOV38axT2Ux2qgasdWANdIukXpJ7SG26sk/UrS1ZIOyGUdcbwk7Ur6MP9epXhYjpfSVwYHATfWVG0PY6yhjv53RPYXkv4OmAm8rlK8X0RskPQS4DpJt0fEb4cppB8Al0XEU5LeR7qaPGqY9t2M+cCyiHimUlbyeHUsSa8nJaLXVIpfk4/VC4FVkn6drxiGwy9Ir9Xjko4F/hWYPkz7bsZxwL9HRPXqaciPl6TdSMnvwxHxaDu3Xdrz5YqomZ8K+nMbSaOBPYHNTfYdyriQ9Abg08CbI+Kp3vKI2JD/rgVuIJ0pDUtcEbG5Ess3gUOa7TuUcVXMp+bWyRAer/40irv4T1hJejnp9ZsbEZt7yyvHahNwJe27Hd2viHg0Ih7PyyuAHSVNoAOOV9bX2BqS4yVpR1ISujQivl+nSceOsaaU/pJqOB6kK7+1pFs1vV9yHlDT5hSePVnhirx8AM+erLCW9k1WaCaug0hf0E6vKR8H7JSXJwD30KYvbpuMa5/K8luA1Xl5PHBvjm9cXh4/XHHldvuTvjzWcByvvM2pNP7y/Y08+4vkm4b6WDUZ14tJ33keUVP+AmD3yvLPgdnDGNeLel870gf67/Kxa+r1H6q4cv2epO+RXjBcxys/90uAL/fRptgYa8tzLB3AsD3RNKvkN6QP9U/nsjNJVxkAOwPfzW/Mm4CXVPp+Ove7G5gzzHH9BHgQ+GV+LM/lRwC35zfj7cDCYY7r88CavP/rgf0rfd+dj2M3cNJwxpXXPwt8oabfkB0v0tnxRuCPpHvwC4H3A+/P9SL9B4+/zfueOUzHqr+4vglsrYytrlz+knycfpVf408Pc1ynVsbWaiqJst7rP1xx5TYnkiYvVfsN9fF6Dek7qNsqr9WxnTDG2vXwT/yYmVlRz5fviMzMrEM5EZmZWVFORGZmVpQTkZmZFeVEZGZmRTkRmZlZUU5EZmZW1P8H0D8NaW2yxzcAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "gender = []\n",
+ "for g in data['gender'].values:\n",
+ " if g == 'male':\n",
+ " gender.append(1)\n",
+ " else:\n",
+ " gender.append(0)\n",
+ " \n",
+ "\n",
+ "plt.hist(gender, range(3))\n",
+ "plt.title('There are total ' + str(len(gender) - sum(gender)) + ' female images and ' + str(sum(gender)) + ' male images')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGoBJREFUeJzt3X2QHdV95vHvE/FmwIsEKLIsCUteFBOcDRhPeCl7sw7EQoDLoiqYIkvCLKuN1lWwsVOujUVcKdlgbEhlg03ZJqVCsgWxwQTjRQuUiSLA3tQuLyNgMS8mGl6lQUJjJAE2Mbbws3/0GXEZz2Tu1dyZO3P7+VTdmu7Tp7vPoUX/7jl9bh/ZJiIi6ufXOl2AiIjojASAiIiaSgCIiKipBICIiJpKAIiIqKkEgIiImkoAiCgk/YWka9t4vJ9IendZ/oakz7fx2H8r6S/bdbyopwSA6DhJ90jaJenACT7HzyS9KukVSZskrWw8p+0v2P4vTR5rzHy2D7X9dBvK/p8k/dOwY3/c9mXjPXbUWwJAdJSkhcC/Bwx8dIJPd7HttwNzgU8B5wF3SFI7TyJpv3YeL2KiJABEp10A3At8A+ht3CDpCEn/q3xjf0DS5xu/CUs6RtIGSTslPSnp3GZOaPuntu+hCjinAGeV431W0t+V5YMk/Z2klyTtLuefI+lyqoD1ldLF85WS35IukrQZ2NyQdnTDqY8s5X1V0vclvavkW1jy7g0cQ60MSb8J/C1wSjnf7rL9LV1Kkv5EUn/5b7Fe0jsbtlnSxyVtLnX5aruDXkxPCQDRaRcA3yyf0yXNadj2VeCnwDuogsPeACHpEGAD8C3g16m+zX9N0rHNntj280Af1Q19uF7gMGABcATwceBfbH8G+N9UrYlDbV/csM/ZwEnAaGU4H7gMOBJ4uNR5rDI+Uc79f8v5Zg7PI+lU4IvAuVStm+eAG4dl+wjwO8Bvl3ynj3Xu6H4JANExkj4IvAu4yfYm4CngP5ZtM4A/AFbZfs3248C6ht0/Ajxr++u299h+CPgO8LEWi/ECcPgI6b+guvEfbfsN25tsvzLGsb5oe6ftfxll++22f2D7deAzVN/qF7RY3pGcD6y1/WA59iXl2Asb8lxhe3cJencDx7fhvDHNJQBEJ/UC/2D7x2X9W7z5LX82sB+wpSF/4/K7gJNKl8bu0jVyPlVroRXzgJ0jpF8P3AncKOkFSX8laf8xjrWl2e22f1LO+87RszftnVTf+huP/RJV3YZsb1h+DTi0DeeNaS4Pq6IjJL2NqitihqShm9OBwExJxwGPAnuA+cA/l+2N35a3AN+3/eFxlGEB8H7gyuHbbP8C+BzwufJN+g7gSWAN1QPrkYz1at295Zd0KFXL4wXgZyX5YGColdEYyMY67gtUAXHo2IdQtV4Gxtgvai4tgOiUs4E3qPrLjy+f36TqX7/A9hvALcBnJR0s6Riq5wVDbgN+Q9IfS9q/fH6nPDT9V5Xj/QfgVuB+qpv78Dy/J+nfla6oV6i6hH5ZNr8IvHsf6nympA9KOoDqWcC9trfYHqS6Wf+RpBmS/jPwbxv2exGYX/YbyQ3AhZKOL8NavwDcZ/vZfShj1EgCQHRKL/B128/b3j70Ab4CnF9GxFxM9SB2O1WXzA3A6wC2XwWWUD38faHkuZKqFTGar0h6leqG+iWqZwZLbf9yhLzvAG6muvk/AXy/lAHgy8A55bcLV7dQ528Bq6i6ft4P/FHDtj8B/jtV1817gf/TsO0u4DFgu6QfM4ztfwT+stRnG1XwOK+FckVNKRPCxHQh6UrgHbZ7x8wcEWNKCyCmrDLO/7dVORFYDny30+WK6BZ5CBxT2dupun3eSdVt8z+o+u0jog3SBRQRUVPpAoqIqKkp3QV05JFHeuHChZ0uRkTEtLJp06Yf2549Vr4pHQAWLlxIX19fp4sRETGtSHpu7FzpAoqIqK0EgIiImkoAiIioqQSAiIiaSgCIiKipBICIiJpKAIiIqKkEgIiImkoAiIioqSn9S+CYPhauvH3v8rNXnNXBkkREs9ICiIioqQSAiIiaaioASPozSY9JelTSDZIOkrRI0n2S+iV9e2jCakkHlvX+sn1hw3EuKelPSjp9YqoUERHNGDMASJoH/CnQY/u3gBlUE05fCVxl+2hgF9V0fZS/u0r6VSUfko4t+70XWAp8TdKM9lYnIiKa1WwX0H7A2yTtBxwMbANOBW4u29cBZ5flZWWdsv00SSrpN9p+3fYzQD9w4virEBER+2LMAGB7APhr4HmqG//LwCZgt+09JdtWYF5ZngdsKfvuKfmPaEwfYZ+9JK2Q1Cepb3BwcF/qFBERTWimC2gW1bf3RVSTcx9C1YUzIWyvtt1ju2f27DEntImIiH3UTBfQ7wPP2B60/QvgFuADwMzSJQQwHxgoywPAAoCy/TDgpcb0EfaJiIhJ1kwAeB44WdLBpS//NOBx4G7gnJKnF7i1LK8v65Ttd9l2ST+vjBJaBCwG7m9PNSIiolVj/hLY9n2SbgYeBPYADwGrgduBGyV9vqStKbusAa6X1A/spBr5g+3HJN1EFTz2ABfZfqPN9YmIiCY19SoI26uAVcOSn2aEUTy2fwZ8bJTjXA5c3mIZIyJiAuSXwBERNZUAEBFRUwkAERE1lQAQEVFTCQARETWVCWGiJZn4JaJ7pAUQEVFTCQARETWVABARUVN5BhBtl+cEEdNDAkCMqJmbeGOeiJh+0gUUEVFTCQARETWVABARUVMJABERNZUAEBFRU81MCv8eSQ83fF6R9ElJh0vaIGlz+Tur5JekqyX1S3pE0gkNx+ot+TdL6h39rBERMdHGDAC2n7R9vO3jgfcDrwHfBVYCG20vBjaWdYAzqOb7XQysAK4BkHQ41axiJ1HNJLZqKGhERMTka/V3AKcBT9l+TtIy4EMlfR1wD/BpYBlwXZkI/l5JMyXNLXk32N4JIGkDsBS4YbyViKkrPwqLmLpaDQDn8eYNe47tbWV5OzCnLM8DtjTss7WkjZb+FpJWULUcOOqoo1osXkxHCRIRndH0Q2BJBwAfBf5++Lbybd/tKJDt1bZ7bPfMnj27HYeMiIgRtNICOAN40PaLZf1FSXNtbytdPDtK+gCwoGG/+SVtgDe7jIbS79mXQsf0lG/6EVNLK8NA/5C39tevB4ZG8vQCtzakX1BGA50MvFy6iu4ElkiaVR7+LilpERHRAU21ACQdAnwY+K8NyVcAN0laDjwHnFvS7wDOBPqpRgxdCGB7p6TLgAdKvkuHHghHRMTkayoA2P4pcMSwtJeoRgUNz2vgolGOsxZY23oxIyKi3fI66OiIvEo6ovPyKoiIiJpKC6DmMjInor7SAoiIqKm0AGJM6a+P6E4JADFljRZ40lUV0R7pAoqIqKkEgIiImkoAiIioqQSAiIiaSgCIiKipBICIiJpKAIiIqKkEgIiImsoPwWKv/OI3ol4SAGJKSRCKmDxNdQFJminpZkk/kvSEpFMkHS5pg6TN5e+skleSrpbUL+kRSSc0HKe35N8sqXf0M0ZExERr9hnAl4Hv2T4GOA54AlgJbLS9GNhY1qGaPH5x+awArgGQdDiwCjgJOBFYNRQ0IiJi8o0ZACQdBvwusAbA9s9t7waWAetKtnXA2WV5GXCdK/cCMyXNBU4HNtjeaXsXsAFY2tbaRERE05ppASwCBoGvS3pI0rVlkvg5treVPNuBOWV5HrClYf+tJW209LeQtEJSn6S+wcHB1moTERFNayYA7AecAFxj+33AT3mzuwfYOxG821Eg26tt99jumT17djsOGRERI2hmFNBWYKvt+8r6zVQB4EVJc21vK108O8r2AWBBw/7zS9oA8KFh6ffse9FjX2WkTURAEy0A29uBLZLeU5JOAx4H1gNDI3l6gVvL8nrggjIa6GTg5dJVdCewRNKs8vB3SUmLiIgOaPZ3AP8N+KakA4CngQupgsdNkpYDzwHnlrx3AGcC/cBrJS+2d0q6DHig5LvU9s621CIiIlrWVACw/TDQM8Km00bIa+CiUY6zFljbSgEjImJi5F1AERE1lQAQEVFTCQARETWVABARUVMJABERNZUAEBFRU5kPoCby69+IGC4tgIiImkoAiIioqXQBxbTT2J317BVndbAkEdNbAkBMa6M920hgiBhbuoAiImoqASAioqYSACIiaioBICKiphIAIiJqqqkAIOlZST+U9LCkvpJ2uKQNkjaXv7NKuiRdLalf0iOSTmg4Tm/Jv1lS72jni4iIiddKC+D3bB9ve2hmsJXARtuLgY1lHeAMYHH5rACugSpgAKuAk4ATgVVDQSMiIibfeLqAlgHryvI64OyG9OtcuReYKWkucDqwwfZO27uADcDScZw/IiLGodkAYOAfJG2StKKkzbG9rSxvB+aU5XnAloZ9t5a00dLfQtIKSX2S+gYHB5ssXkREtKrZXwJ/0PaApF8HNkj6UeNG25bkdhTI9mpgNUBPT09bjhkREb+qqQBge6D83SHpu1R9+C9Kmmt7W+ni2VGyDwALGnafX9IGgA8NS79nXKWPGEXeFxQxtjG7gCQdIuntQ8vAEuBRYD0wNJKnF7i1LK8HLiijgU4GXi5dRXcCSyTNKg9/l5S0iIjogGZaAHOA70oayv8t29+T9ABwk6TlwHPAuSX/HcCZQD/wGnAhgO2dki4DHij5LrW9s201iYiIlowZAGw/DRw3QvpLwGkjpBu4aJRjrQXWtl7MiIhot/wSOCKiphIAIiJqKhPCRK0Mn0AmI4SiztICiIioqQSAiIiaShdQlxptrtyIiCFpAURE1FQCQERETSUARETUVJ4BdJH0+0dEK9ICiIioqbQAouulZRQxsrQAIiJqKi2AqLVMHBN1lhZARERNJQBERNRU0wFA0gxJD0m6rawvknSfpH5J35Z0QEk/sKz3l+0LG45xSUl/UtLp7a5MREQ0r5UWwCeAJxrWrwSusn00sAtYXtKXA7tK+lUlH5KOBc4D3gssBb4macb4ih8REfuqqQAgaT5wFnBtWRdwKnBzybIOOLssLyvrlO2nlfzLgBttv277Gao5g09sRyUiIqJ1zbYAvgT8OfDLsn4EsNv2nrK+FZhXlucBWwDK9pdL/r3pI+yzl6QVkvok9Q0ODrZQlYiIaMWYAUDSR4AdtjdNQnmwvdp2j+2e2bNnT8YpIyJqqZnfAXwA+KikM4GDgH8DfBmYKWm/8i1/PjBQ8g8AC4CtkvYDDgNeakgf0rhPRERMsjFbALYvsT3f9kKqh7h32T4fuBs4p2TrBW4ty+vLOmX7XbZd0s8ro4QWAYuB+9tWk4iIaMl4fgn8aeBGSZ8HHgLWlPQ1wPWS+oGdVEED249Jugl4HNgDXGT7jXGcPyIixqGlAGD7HuCesvw0I4zisf0z4GOj7H85cHmrhYzR5UVnEbGv8kvgiIiaSgCIiKipBICIiJpKAIiIqKkEgIiImsqEMBFFJoeJukkLICKiptICiBhBWgNRB2kBRETUVAJARERNJQBERNRUAkBERE0lAERE1FQCQERETWUYaMQYMiQ0ulVaABERNdXMpPAHSbpf0v+T9Jikz5X0RZLuk9Qv6duSDijpB5b1/rJ9YcOxLinpT0o6faIqFRERY2umBfA6cKrt44DjgaWSTgauBK6yfTSwC1he8i8HdpX0q0o+JB1LNT3ke4GlwNckzWhnZSIionnNTApv2z8pq/uXj4FTgZtL+jrg7LK8rKxTtp8mSSX9Rtuv234G6GeEKSUjImJyNPUMQNIMSQ8DO4ANwFPAbtt7SpatwLyyPA/YAlC2vwwc0Zg+wj4RETHJmgoAtt+wfTwwn+pb+zETVSBJKyT1SeobHBycqNNERNReS6OAbO8G7gZOAWZKGhpGOh8YKMsDwAKAsv0w4KXG9BH2aTzHats9tntmz57dSvEiIqIFzYwCmi1pZll+G/Bh4AmqQHBOydYL3FqW15d1yva7bLukn1dGCS0CFgP3t6siEZNh4crb934iprtmfgg2F1hXRuz8GnCT7dskPQ7cKOnzwEPAmpJ/DXC9pH5gJ9XIH2w/Jukm4HFgD3CR7TfaW52IiGjWmAHA9iPA+0ZIf5oRRvHY/hnwsVGOdTlweevFjIiIdsurICL2UV4REdNdXgUREVFTCQARETWVLqBpKCNQIqId0gKIiKipBICIiJpKF1BEG2REUExHaQFERNRUWgARbZbWQEwXaQFERNRUAkBERE0lAERE1FQCQERETSUARETUVAJARERNJQBERNRUM1NCLpB0t6THJT0m6RMl/XBJGyRtLn9nlXRJulpSv6RHJJ3QcKzekn+zpN7RzhnRjTKdZEw1zbQA9gCfsn0scDJwkaRjgZXARtuLgY1lHeAMqvl+FwMrgGugChjAKuAkqpnEVg0FjYiImHxjBgDb22w/WJZfpZoQfh6wDFhXsq0Dzi7Ly4DrXLkXmClpLnA6sMH2Ttu7gA3A0rbWJiIimtbSMwBJC6nmB74PmGN7W9m0HZhTlucBWxp221rSRkuPiIgOaPpdQJIOBb4DfNL2K5L2brNtSW5HgSStoOo64qijjmrHISM6Jv39MZU11QKQtD/Vzf+btm8pyS+Wrh3K3x0lfQBY0LD7/JI2Wvpb2F5tu8d2z+zZs1upS0REtGDMFoCqr/prgCds/03DpvVAL3BF+XtrQ/rFkm6keuD7su1tku4EvtDw4HcJcEl7qtH98k0yItqtmS6gDwB/DPxQ0sMl7S+obvw3SVoOPAecW7bdAZwJ9AOvARcC2N4p6TLggZLvUts721KLiIho2ZgBwPY/ARpl82kj5Ddw0SjHWgusbaWAERExMTIhTEQHZNKYmAryKoiIiJpKCyBiCknLICZTAkBEhzUzwiuBISZCAkDEFJWhvzHREgCmsNwAImIi5SFwRERNJQBERNRUAkBERE3lGUDENJMRQdEuaQFERNRUAkBERE0lAERE1FSeAURMY6P9ViTPBqIZCQBTTH78FRGTJV1AERE1lQAQEVFTYwYASWsl7ZD0aEPa4ZI2SNpc/s4q6ZJ0taR+SY9IOqFhn96Sf7Ok3ompTkRENKuZFsA3gKXD0lYCG20vBjaWdYAzgMXlswK4BqqAAayimiT+RGBVw+TwEdFmC1fevvcTMZpm5gT+gaSFw5KXAR8qy+uAe4BPl/TryrzA90qaKWluybthaBJ4SRuogsoN465BF8j/pDGR8svhGM2+PgOYY3tbWd4OzCnL84AtDfm2lrTR0n+FpBWS+iT1DQ4O7mPxIiJiLOMeBmrbktyOwpTjrQZWA/T09LTtuBGR1kC81b4GgBclzbW9rXTx7CjpA8CChnzzS9oAb3YZDaXfs4/n7grp9omITtvXLqD1wNBInl7g1ob0C8pooJOBl0tX0Z3AEkmzysPfJSUtIiI6ZMwWgKQbqL69HylpK9VoniuAmyQtB54Dzi3Z7wDOBPqB14ALAWzvlHQZ8EDJd+nQA+GIiOgMVQN2pqaenh739fV1uhgTIl1AMZXl+cD0JmmT7Z6x8uVdQJMoN/2ImEoSACLiX5WRQ90rAWCC5Vt/TEf5d1sPeRlcRERNpQUQEU1Ld1B3SQCIiH2SYDD9JQBMgPSfRsR0kAAQEeOW1sD0lIfAERE1lRZARLRVM12gaSVMDQkAbZJ+/4jmpctoakgAiIiOSjDonASAcci3/oj2Gu3/qQSGiZEA0KLc9CMmX1oJEyMBICKmlQSD9kkAiIhpK11G4zPpAUDSUuDLwAzgWttXTHYZWpVun4jpJUNRmzOpAUDSDOCrwIeBrcADktbbfnyiz91qszE3/Yju1sw9Yfh9oNuCxqROCSnpFOCztk8v65cA2P7iSPnHOyVkbuIRMVW0+sVzPMFmqk4JOQ/Y0rC+FTipMYOkFcCKsvoTSU+O43xHAj8ex/7TTd3qC6lzXUz7OuvKlvOPp87vaibTlHsIbHs1sLodx5LU10wU7BZ1qy+kznWROk+MyX4Z3ACwoGF9fkmLiIhJNtkB4AFgsaRFkg4AzgPWT3IZIiKCSe4Csr1H0sXAnVTDQNfafmwCT9mWrqRppG71hdS5LlLnCTCpo4AiImLqyIQwERE1lQAQEVFTXRkAJC2V9KSkfkkrO12eiSBpgaS7JT0u6TFJnyjph0vaIGlz+Tur02VtJ0kzJD0k6bayvkjSfeVaf7sMLugqkmZKulnSjyQ9IemUbr7Okv6s/Jt+VNINkg7qxussaa2kHZIebUgb8bqqcnWp/yOSTmhHGbouADS8buIM4FjgDyUd29lSTYg9wKdsHwucDFxU6rkS2Gh7MbCxrHeTTwBPNKxfCVxl+2hgF7C8I6WaWF8Gvmf7GOA4qvp35XWWNA/4U6DH9m9RDRY5j+68zt8Alg5LG+26ngEsLp8VwDXtKEDXBQDgRKDf9tO2fw7cCCzrcJnazvY22w+W5VepbgrzqOq6rmRbB5zdmRK2n6T5wFnAtWVdwKnAzSVLV9UXQNJhwO8CawBs/9z2brr4OlONTnybpP2Ag4FtdOF1tv0DYOew5NGu6zLgOlfuBWZKmjveMnRjABjpdRPzOlSWSSFpIfA+4D5gju1tZdN2YE6HijURvgT8OfDLsn4EsNv2nrLejdd6ETAIfL10fV0r6RC69DrbHgD+Gnie6sb/MrCJ7r/OQ0a7rhNyX+vGAFArkg4FvgN80vYrjdtcjfHtinG+kj4C7LC9qdNlmWT7AScA19h+H/BThnX3dNl1nkX1bXcR8E7gEH61m6QWJuO6dmMAqM3rJiTtT3Xz/6btW0ryi0NNw/J3R6fK12YfAD4q6Vmqbr1TqfrGZ5auAujOa70V2Gr7vrJ+M1VA6Nbr/PvAM7YHbf8CuIXq2nf7dR4y2nWdkPtaNwaAWrxuovR/rwGesP03DZvWA71luRe4dbLLNhFsX2J7vu2FVNf0LtvnA3cD55RsXVPfIba3A1skvacknQY8TpdeZ6qun5MlHVz+jQ/Vt6uvc4PRrut64IIyGuhk4OWGrqJ9Z7vrPsCZwD8DTwGf6XR5JqiOH6RqHj4CPFw+Z1L1i28ENgP/CBze6bJOQN0/BNxWlt8N3A/0A38PHNjp8k1AfY8H+sq1/p/ArG6+zsDngB8BjwLXAwd243UGbqB6zvELqpbe8tGuKyCq0Y1PAT+kGiU17jLkVRARETXVjV1AERHRhASAiIiaSgCIiKipBICIiJpKAIiIqKkEgIiImkoAiIioqf8P9mAs1ROFKUwAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.hist(data['age'], range(101))\n",
+ "plt.title('Age Distribution')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/README.md b/README.md
index 67b1588..793572f 100644
--- a/README.md
+++ b/README.md
@@ -39,7 +39,7 @@ The dataset is great for research purposes. It contains more than `500 thousand+
In this project, I filter all the images, resized them all to `128x128`, remove all the images with invalid age, fix the gender distribution problem, and save them in the proper format. Along with that, I’ve also processed the `.mat` files and converted them in `.csv` files also.
## File Structure
-This repository contains 4 files
+This repository contains 3 files
- `mat.py`
- `gender.py`
- `age.py`