-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdynamic_inverted_softmax.py
66 lines (57 loc) · 2.67 KB
/
dynamic_inverted_softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import argparse
import pickle as pkl
import numpy as np
import metric
# Returns list of retrieved top k videos based on the sims matrix
def get_retrieved_videos(sims, k):
argm = np.argsort(-sims, axis=1)
topk = argm[:,:k].reshape(-1)
retrieved_videos = np.unique(topk)
return retrieved_videos
# Returns list of indices to normalize from sims based on videos
def get_index_to_normalize(sims, videos):
argm = np.argsort(-sims, axis=1)[:,0]
result = np.array(list(map(lambda x: x in videos, argm)))
result = np.nonzero(result)
return result
def qb_norm(train_test, test_test, args):
k = args.get("k", 1)
beta = args.get("beta", 20)
retrieved_videos = get_retrieved_videos(train_test, k)
test_test_normalized = test_test
train_test = np.exp(train_test*beta)
test_test = np.exp(test_test*beta)
normalizing_sum = np.sum(train_test, axis=0)
index_for_normalizing = get_index_to_normalize(test_test, retrieved_videos)
test_test_normalized[index_for_normalizing, :] = \
np.divide(test_test[index_for_normalizing, :], normalizing_sum)
return test_test_normalized
def main():
args = argparse.ArgumentParser(description= \
'QB-Norm and Dynamic Inverted Softmax')
args.add_argument("--sims_train_test_path", type=str, required=True, \
help="path to the similarity matrix between the captions from training and the videos from testing")
args.add_argument("--sims_test_path", type=str, required=True, \
help="path to the similarity matrix between the captions from testing and the videos from testing, this is the original matrix used for computing the metrics")
args.add_argument("--test_query_masks_path",
type=str, default=None,
help="path to the query masks")
args.add_argument("--beta", default=20.0, type=float)
args.add_argument("--k", default=1, type=int)
args = vars(args.parse_args())
train_test = pkl.load(open(args["sims_train_test_path"], 'rb'))
test_test = pkl.load(open(args["sims_test_path"], 'rb'))
msg = "Expected train_test_matrix.shape[1] == test_matrix.shape[1]"
assert train_test.shape[1] == test_test.shape[1], msg
test_query_masks_path = args.get("test_query_masks_path", None)
if test_query_masks_path:
test_query_masks = pkl.load(open(test_query_masks_path, 'rb'))
else:
test_query_masks = None
print("Metrics before applying QB-Norm")
print(metric.t2v_metrics(test_test, test_query_masks))
test_test_normalized = qb_norm(train_test, test_test, args)
print("Metrics after QB-Norm")
print(metric.t2v_metrics(test_test_normalized, test_query_masks))
if __name__ == '__main__':
main()