-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
370 lines (296 loc) · 12.9 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import glob, os, copy
import tensorflow as tf
import numpy as np
import utils
import walks
import dataset_prepare
from saliency import *
# Glabal list of dataset parameters. Used as part of runtime acceleration affort.
dataset_params_list = []
saliency_mem_dict = {}
# ------------------------------------------------------------------ #
# ---------- Some utility functions -------------------------------- #
# ------------------------------------------------------------------ #
def load_model_from_npz(npz_fn):
if npz_fn.find(':') != -1:
npz_fn = npz_fn.split(':')[1]
mesh_data = np.load(npz_fn, encoding='latin1', allow_pickle=True)
return mesh_data
def norm_model(vertices):
# Move the model so the bbox center will be at (0, 0, 0)
mean = np.mean((np.min(vertices, axis=0), np.max(vertices, axis=0)), axis=0)
vertices -= mean
# Scale model to fit into the unit ball
norm_with = np.max(vertices)
vertices /= norm_with
if norm_model.sub_mean_for_data_augmentation: # TODO: check again
vertices -= np.nanmean(vertices, axis=0)
def get_file_names(pathname_expansion, min_max_faces2use):
filenames_ = glob.glob(pathname_expansion)
filenames = []
for fn in filenames_:
try:
n_faces = int(fn.split('.')[-2].split('_')[-1])
if n_faces > min_max_faces2use[1] or n_faces < min_max_faces2use[0]:
continue
except:
pass
filenames.append(fn)
assert len(filenames) > 0, 'DATASET error: no files in directory to be used! \nDataset directory: ' + pathname_expansion
return filenames
def dump_all_fns_to_file(filenames, params):
if 'logdir' in params.keys():
for n in range(10):
log_fn = params.logdir + '/dataset_files_' + str(n).zfill(2) + '.txt'
if not os.path.isfile(log_fn):
try:
with open(log_fn, 'w') as f:
for fn in filenames:
f.write(fn + '\n')
except:
pass
break
def filter_fn_by_class(filenames_, classes_indices_to_use):
filenames = []
for fn in filenames_:
mesh_data = np.load(fn, encoding='latin1', allow_pickle=True)
if classes_indices_to_use is not None and mesh_data['label'] not in classes_indices_to_use:
continue
filenames.append(fn)
return filenames
def data_augmentation_rotation(vertices):
max_rot_ang_deg = data_augmentation_rotation.max_rot_ang_deg
x = np.random.uniform(-max_rot_ang_deg, max_rot_ang_deg) * np.pi / 180
y = np.random.uniform(-max_rot_ang_deg, max_rot_ang_deg) * np.pi / 180
z = np.random.uniform(-max_rot_ang_deg, max_rot_ang_deg) * np.pi / 180
A = np.array(((np.cos(x), -np.sin(x), 0),
(np.sin(x), np.cos(x), 0),
(0, 0, 1)),
dtype=vertices.dtype)
B = np.array(((np.cos(y), 0, -np.sin(y)),
(0, 1, 0),
(np.sin(y), 0, np.cos(y))),
dtype=vertices.dtype)
C = np.array(((1, 0, 0),
(0, np.cos(z), -np.sin(z)),
(0, np.sin(z), np.cos(z))),
dtype=vertices.dtype)
np.dot(vertices, A, out=vertices)
np.dot(vertices, B, out=vertices)
np.dot(vertices, C, out=vertices)
# ------------------------------------------------------------------ #
# --- Some functions used to set up the RNN input "features" ------- #
# ------------------------------------------------------------------ #
def fill_xyz_features(features, f_idx, vertices, mesh_extra, seq, jumps, seq_len,encodejumps=False):
walk = vertices[seq[1:seq_len + 1]]
features[:, f_idx:f_idx + walk.shape[1]] = walk
f_idx += 3
if encodejumps:
for j in range(features.shape[0]):
features[j][3] = jumps[j]
return f_idx
def fill_dxdydz_features(features, f_idx, vertices, mesh_extra, seq, jumps, seq_len, encodejumps=False):
walk = np.diff(vertices[seq[:seq_len + 1]], axis=0) * 100
features[:, f_idx:f_idx + walk.shape[1]] = walk
f_idx += 3
if encodejumps:
for j in range(features.shape[0]):
features[j][3] = jumps[j]
return f_idx
def fill_vertex_indices(features, f_idx, vertices, mesh_extra, seq, jumps, seq_len):
walk = seq[1:seq_len + 1][:, None]
features[:, f_idx:f_idx + walk.shape[1]] = walk
f_idx += 1
return f_idx
# ------------------------------------------------------------------ #
def setup_data_augmentation(dataset_params, data_augmentation):
dataset_params.data_augmentaion_vertices_functions = []
if 'rotation' in data_augmentation.keys() and data_augmentation['rotation']:
data_augmentation_rotation.max_rot_ang_deg = data_augmentation['rotation']
dataset_params.data_augmentaion_vertices_functions.append(data_augmentation_rotation)
def setup_features_params(dataset_params, params):
if params.uniform_starting_point:
dataset_params.area = 'all'
else:
dataset_params.area = -1
norm_model.sub_mean_for_data_augmentation = params.sub_mean_for_data_augmentation
dataset_params.support_mesh_cnn_ftrs = False
dataset_params.fill_features_functions = []
dataset_params.number_of_features = 0
net_input = params.net_input
if 'xyz' in net_input:
#dataset_params.fill_features_functions.append(fill_xyz_features)
dataset_params.fill_features_functions.append(\
lambda features, f_idx, vertices, mesh_extra, seq, jumps, seq_len:\
fill_xyz_features(features, f_idx, vertices, mesh_extra, seq, jumps, seq_len,params.encodejumps))
dataset_params.number_of_features += 3
if params.encodejumps:
dataset_params.number_of_features += 1
if 'dxdydz' in net_input:
#dataset_params.fill_features_functions.append(fill_dxdydz_features)
dataset_params.fill_features_functions.append(\
lambda features, f_idx, vertices, mesh_extra, seq, jumps, seq_len:\
fill_dxdydz_features(features, f_idx, vertices, mesh_extra, seq, jumps, seq_len,params.encodejumps))
dataset_params.number_of_features += 3
if params.encodejumps:
dataset_params.number_of_features += 1
if 'vertex_indices' in net_input:
dataset_params.fill_features_functions.append(fill_vertex_indices)
dataset_params.number_of_features += 1
dataset_params.edges_needed = True
walk_func = None
if params.walk_alg == 'random_global_jumps':
if params.walk_name == "skip":
walk_func = walks.regularWalkWithSkips
elif params.walk_name == "walk_with_jumps":
walk_func = walks.regularWalkWithJumps
elif params.walk_name == "order":
walk_func = walks.WalkInOrderlyFashion
else:
walk_func = walks.get_seq_random_walk_random_global_jumps
dataset_params.walk_function = walk_func #walks.get_seq_random_walk_random_global_jumps
else:
raise Exception('Walk alg not recognized: ' + params.walk_alg)
return dataset_params.number_of_features
# ------------------------------------------------- #
# ------- TensorFlow dataset functions ------------ #
# ------------------------------------------------- #
def generate_walk_py_fun(fn, vertices, faces, edges, labels, params_idx):
return tf.py_function(
generate_walk,
inp=(fn, vertices, faces, edges, labels, params_idx, False),
Tout=(fn.dtype, vertices.dtype, tf.int32)
)
def generate_walk_py_fun_saliency(fn, vertices, faces, edges, labels, params_idx):
return tf.py_function(
generate_walk,
inp=(fn, vertices, faces, edges, labels, params_idx, True),
Tout=(fn.dtype, vertices.dtype, tf.int32)
)
def generate_walk(fn, vertices, faces, edges, labels_from_npz, params_idx, use_saliency):
mesh_data = {'vertices': vertices.numpy(),
'faces': faces.numpy(),
'edges': edges.numpy(),
}
if dataset_params_list[params_idx[0]].label_per_step:
mesh_data['labels'] = labels_from_npz.numpy()
dataset_params = dataset_params_list[params_idx[0].numpy()]
features, labels = mesh_data_to_walk_features(mesh_data, dataset_params, use_saliency)
if dataset_params_list[params_idx[0]].label_per_step:
labels_return = labels
else:
labels_return = labels_from_npz
return fn[0], features, labels_return
def mesh_data_to_walk_features(mesh_data, dataset_params, use_saliency):
vertices = mesh_data['vertices']
seq_len = dataset_params.seq_len
if dataset_params.set_seq_len_by_n_faces:
seq_len = int(mesh_data['vertices'].shape[0])
seq_len = min(seq_len, dataset_params.seq_len)
# Preprocessing
if dataset_params.adjust_vertical_model:
vertices[:, 1] -= vertices[:, 1].min()
if dataset_params.normalize_model:
norm_model(vertices)
# Data augmentation
for data_augmentaion_function in dataset_params.data_augmentaion_vertices_functions:
data_augmentaion_function(vertices)
# Get essential data from file
if dataset_params.label_per_step:
mesh_labels = mesh_data['labels']
else:
mesh_labels = -1 * np.ones((vertices.shape[0],))
mesh_extra = {}
mesh_extra['n_vertices'] = vertices.shape[0]
if dataset_params.edges_needed:
mesh_extra['edges'] = mesh_data['edges']
features = np.zeros((dataset_params.n_walks_per_model, seq_len, dataset_params.number_of_features), dtype=np.float32)
labels = np.zeros((dataset_params.n_walks_per_model, seq_len), dtype=np.int32)
if use_saliency:
saliency_res = compute_saliency(mesh_data, saliency_mem_dict)
for walk_id in range(dataset_params.n_walks_per_model):
if use_saliency:
f0 = np.random.choice(vertices.shape[0], p=saliency_res)
else:
f0 = np.random.randint(vertices.shape[0])
seq, jumps = dataset_params.walk_function(mesh_extra, f0, seq_len)
f_idx = 0
for fill_ftr_fun in dataset_params.fill_features_functions:
f_idx = fill_ftr_fun(features[walk_id], f_idx, vertices, mesh_extra, seq, jumps, seq_len)
if dataset_params.label_per_step:
labels[walk_id] = mesh_labels[seq[1:seq_len + 1]]
return features, labels
def setup_dataset_params(params, data_augmentation):
p_idx = len(dataset_params_list)
ds_params = copy.deepcopy(params)
ds_params.set_seq_len_by_n_faces = False
setup_data_augmentation(ds_params, data_augmentation)
setup_features_params(ds_params, params)
dataset_params_list.append(ds_params)
return p_idx
class OpenMeshDataset(tf.data.Dataset):
# OUTPUT: (fn, vertices, faces, edges, labels, params_idx)
OUTPUT_TYPES = (tf.dtypes.string, tf.dtypes.float32, tf.dtypes.int16, tf.dtypes.int16, tf.dtypes.int32, tf.dtypes.int16)
def _generator(fn_, params_idx):
fn = fn_[0]
with np.load(fn, encoding='latin1', allow_pickle=True) as mesh_data:
vertices = mesh_data['vertices']
faces = mesh_data['faces']
edges = mesh_data['edges']
if dataset_params_list[params_idx].label_per_step:
labels = mesh_data['labels']
else:
labels = mesh_data['label']
name = mesh_data['dataset_name'].tolist() + ':' + fn.decode()
yield ([name], vertices, faces, edges, labels, [params_idx])
def __new__(cls, filenames, params_idx):
return tf.data.Dataset.from_generator(
cls._generator,
output_types=cls.OUTPUT_TYPES,
args=(filenames, params_idx)
)
def tf_mesh_dataset(params, pathname_expansion, mode=None, size_limit=np.inf, shuffle_size=1000,
permute_file_names=True, min_max_faces2use=[0, np.inf], data_augmentation={},
must_run_on_all=False, min_dataset_size=16, use_saliency=False):
params_idx = setup_dataset_params(params, data_augmentation)
number_of_features = dataset_params_list[params_idx].number_of_features
params.net_input_dim = number_of_features
mesh_data_to_walk_features.SET_SEED_WALK = 0
filenames = get_file_names(pathname_expansion, min_max_faces2use)
if params.classes_indices_to_use is not None:
filenames = filter_fn_by_class(filenames, params.classes_indices_to_use)
if permute_file_names:
filenames = np.random.permutation(filenames)
else:
filenames.sort()
filenames = np.array(filenames)
if size_limit < len(filenames):
filenames = filenames[:size_limit]
n_items = len(filenames)
if len(filenames) < min_dataset_size:
filenames = filenames.tolist() * (int(min_dataset_size / len(filenames)) + 1)
if mode == 'classification':
dataset_params_list[params_idx].label_per_step = False
elif mode == 'semantic_segmentation':
dataset_params_list[params_idx].label_per_step = True
else:
raise Exception('DS mode ?')
dump_all_fns_to_file(filenames, params)
def _open_npz_fn(*args):
return OpenMeshDataset(args, params_idx)
ds = tf.data.Dataset.from_tensor_slices(filenames)
if shuffle_size:
ds = ds.shuffle(shuffle_size)
ds = ds.interleave(_open_npz_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds = ds.cache()
# until here, order doesnt matter for attention
if use_saliency:
ds = ds.map(generate_walk_py_fun_saliency, num_parallel_calls=tf.data.experimental.AUTOTUNE)
else:
ds = ds.map(generate_walk_py_fun, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds = ds.batch(params.batch_size, drop_remainder=False)
ds = ds.prefetch(tf.data.experimental.AUTOTUNE)
return ds, n_items
if __name__ == '__main__':
utils.config_gpu(False)
np.random.seed(1)