-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
140 lines (111 loc) · 4.22 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import streamlit as st
import matplotlib.pyplot as plt
import preprocessor
import helper
import seaborn as sns
st.sidebar.title("Whatsapp Chat Analyzer")
upload_file = st.sidebar.file_uploader("Choose a file")
if upload_file is not None:
bytes_data = upload_file.getvalue()
data = bytes_data.decode('utf-8')
df = preprocessor.preprocess(data)
# st.dataframe(df)
# fetch unique user
# Check if 'group_notification' exists in the 'user' column
if 'group_notification' in df['user'].unique():
user_list = df['user'].unique().tolist()
user_list.remove('group_notification')
user_list.sort()
user_list.insert(0, "Overall")
else:
# If 'group_notification' doesn't exist, proceed with usual process
user_list = df['user'].unique().tolist()
user_list.sort()
user_list.insert(0, "Overall")
selected_user = st.sidebar.selectbox("Show analysis wrt", user_list)
if st.sidebar.button("Show Analysis"):
# Start Area
num_messages, words, num_media_messages, num_links = helper.fetch_stats(selected_user, df)
st.title("Top Statistics")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.header("Total Messages")
st.title(num_messages)
with col2:
st.header("Total Words")
st.title(words)
with col3:
st.header("Media Shared")
st.title(num_media_messages)
with col4:
st.header("Links Shared")
st.title(num_links)
# montly timeline
st.title("Monthly Timeline")
timeline = helper.monthly_timeline(selected_user, df)
fig,ax = plt.subplots()
ax.plot(timeline['time'], timeline['message'], color = 'green')
plt.xticks(rotation='vertical')
st.pyplot(fig)
# daily timeline
st.title("Daily Timeline")
timeline = helper.daily_timeline(selected_user, df)
fig,ax = plt.subplots()
ax.plot(timeline['only_date'], timeline['message'], color = 'black')
plt.xticks(rotation='vertical')
st.pyplot(fig)
# activity map
st.title('Actvity Map')
col1, col2 = st.columns(2)
with col1:
st.header("Most Busy Day")
busy_day = helper.week_activity_map(selected_user, df)
fig,ax = plt.subplots()
ax.bar(busy_day.index, busy_day.values)
st.pyplot(fig)
with col2:
st.header("Most Busy Month")
busy_day = helper.month_activity_map(selected_user, df)
fig,ax = plt.subplots()
ax.bar(busy_day.index, busy_day.values, color = 'orange')
st.pyplot(fig)
st.title("Weekly Activiry Map")
user_activity_heatmap = helper.activity_heatmap(selected_user, df)
fig,ax = plt.subplots()
ax = sns.heatmap(user_activity_heatmap)
st.pyplot(fig)
# finding the busiest users in the group(Group level)
if selected_user == 'Overall':
st.title('Most Bussy Users')
x, new_df = helper.most_busy_user(df)
fig, ax = plt.subplots()
col1, col2 = st.columns(2)
with col1:
ax.bar(x.index, x.values, color='red')
plt.xticks(rotation='vertical')
st.pyplot(fig)
with col2:
st.dataframe(new_df)
# WordCloud
st.title("Word Cloud")
df_wc = helper.create_wordcloud(selected_user,df)
fig, ax = plt.subplots()
ax.imshow(df_wc)
st.pyplot(fig)
# most common words
most_common_df = helper.most_common_words(selected_user, df)
fig,ax = plt.subplots()
ax.barh(most_common_df[0], most_common_df[1])
plt.xticks(rotation='vertical')
st.title('Most common words')
st.pyplot(fig)
# emoji analysis
emoji_df = helper.emoji_helper(selected_user, df)
st.title('Emoji Analysis')
col1, col2 = st.columns(2)
with col1:
st.dataframe(emoji_df)
with col2:
fig,ax = plt.subplots()
ax.pie(emoji_df[1].head(),labels=emoji_df[0].head(),autopct="%0.2f")
st.pyplot(fig)