-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
105 lines (84 loc) · 3.87 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import numpy as np
import cv2
import glob
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import CustomObjectScope
from metrics import intersection_over_union
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Constants for image dimensions
IMAGE_HEIGHT = 224
IMAGE_WIDTH = 224
def load_file_names(base_path, file_name):
file_path = os.path.join(base_path, file_name)
print(f"Loading names from file: {file_path}")
with open(file_path, "r") as file:
data = file.read().split("\n")[:-1]
image_files = []
mask_files = []
for name in data:
image_files_match = glob.glob(os.path.join(base_path, "images", name + ".*"))
mask_files_match = glob.glob(os.path.join(base_path, "masks", name + ".*"))
if image_files_match:
image_files.append(image_files_match[0])
if mask_files_match:
mask_files.append(mask_files_match[0])
print(f"Loaded {len(image_files)} images and {len(mask_files)} masks.")
return image_files, mask_files
def load_dataset(dataset_paths):
train_images, train_masks, valid_images, valid_masks = [], [], [], []
for dataset_path in dataset_paths:
print(f"Loading data from directory: {dataset_path}")
train_images_data, train_masks_data = load_file_names(dataset_path, "train.txt")
valid_images_data, valid_masks_data = load_file_names(dataset_path, "val.txt")
train_images.extend(train_images_data)
train_masks.extend(train_masks_data)
valid_images.extend(valid_images_data)
valid_masks.extend(valid_masks_data)
return (train_images, train_masks), (valid_images, valid_masks)
def load_test_dataset(test_dataset_path, fulltest=False):
test_images, test_masks = [], []
if fulltest:
image_files = glob.glob(os.path.join(test_dataset_path, "images", "*"))
for image_path in image_files:
image_name = os.path.splitext(os.path.basename(image_path))[0]
mask_path = os.path.join(test_dataset_path, "masks", image_name + ".*")
mask_files = glob.glob(mask_path)
if mask_files:
test_images.append(image_path)
test_masks.append(mask_files[0])
else:
test_images_data, test_masks_data = load_file_names(test_dataset_path, "val.txt")
for image_path, mask_path in zip(test_images_data, test_masks_data):
test_images.append(image_path)
test_masks.append(mask_path)
return test_images, test_masks
def read_image(image_path):
image_path = image_path.decode()
image = cv2.imread(image_path, cv2.IMREAD_COLOR)
image = cv2.resize(image, (IMAGE_WIDTH, IMAGE_HEIGHT), interpolation=cv2.INTER_LANCZOS4)
image = image / 255.0
return image.astype(np.float32)
def read_mask(mask_path):
mask_path = mask_path.decode()
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
mask = cv2.resize(mask, (IMAGE_WIDTH, IMAGE_HEIGHT))
mask = mask / 255.0
return np.expand_dims(mask, axis=-1).astype(np.float32)
def parse_image_and_mask(image_path, mask_path):
def _parse(image_path, mask_path):
image = read_image(image_path)
mask = read_mask(mask_path)
return image, mask
image, mask = tf.numpy_function(_parse, [image_path, mask_path], [tf.float32, tf.float32])
image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, 3])
mask.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, 1])
return image, mask
def create_dataset(image_paths, mask_paths, batch_size=8):
dataset = tf.data.Dataset.from_tensor_slices((image_paths, mask_paths))
dataset = dataset.map(parse_image_and_mask)
dataset = dataset.batch(batch_size)
dataset = dataset.repeat()
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset