-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrainer.py
50 lines (41 loc) · 1.72 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
import torch
class ModelTrainer(object):
def __init__(
self,
config=None,
optimizers={'backbone_model_opt': None, 'duration_model_opt': None},
logger=None,
criterion=None
):
self._config = config
self.optimizers = optimizers
self.logger = logger
self.criterion = criterion
def compute_losses(self, model, batch, training=True):
model.train() if training else model.eval()
outputs = model.forward(batch)
losses = self.criterion(outputs, batch)
loss_stats = self.criterion.loss_stats
if training:
return losses, loss_stats
return losses, loss_stats, outputs
def run_backward(self, model, losses):
for loss in losses:
loss.backward(retain_graph=True)
self.gradient_apply_(model)
def gradient_apply_(self, model):
for key in self.optimizers.keys():
self.optimizers[key].step()
model.zero_grad()
def log_training(self, iteration, loss_stats):
self.logger.log(iteration, loss_stats={f'training/{key}': value
for key, value in loss_stats.items()})
def log_validating(self, iteration, loss_stats):
self.logger.log(iteration, loss_stats={f'validating/{key}': value
for key, value in loss_stats.items()})
def _should_save_checkpoint(self, iteration):
return (iteration % self._config.TRAIN.CHECKPOINT_SAVE_STEP) == 0
def save_checkpoint(self, iteration, model):
if self._should_save_checkpoint(iteration):
self.logger.save_checkpoint(iteration, model)