-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtiramisu.py
189 lines (143 loc) · 7.83 KB
/
tiramisu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from typing import Tuple, Dict
import torch.nn as nn
import torch.nn.functional as F
import torch
class Dense_Block(nn.Module):
def __init__(self,input_features : int, output_features : int,layer_count : int =4 , padding : int = 0, kernel : tuple = (3,3),stride : tuple = (1,1), dropout : float = 0.2 )->None:
super().__init__()
self.input_features = input_features
self.output_features = output_features
self.layer_count = layer_count
self.padding = padding
self.kernel = kernel
self.stride = stride
self.in_loop_features = 0
self.dropout = dropout
#layers
self.dropout = nn.Dropout(p=0.2)
self.conv_layers_list = nn.ModuleList([])
self.batch_norm_list = nn.ModuleList([])
for i in range(0,self.layer_count-1):
if i == 0:
self.batch_norm_list.append(nn.BatchNorm2d(self.input_features,affine=False))
self.conv_layers_list.append(nn.Conv2d(in_channels=self.input_features,out_channels=self.output_features,kernel_size=self.kernel,stride = self.stride,padding=self.padding))
self.in_loop_features = self.input_features + self.output_features
self.batch_norm_list.append(nn.BatchNorm2d(self.in_loop_features,affine=False))
self.conv_layers_list.append(nn.Conv2d(in_channels=self.in_loop_features,out_channels=self.output_features,kernel_size=self.kernel,stride = self.stride,padding=self.padding))
if i == self.layer_count-2:
continue
self.in_loop_features = self.in_loop_features + self.output_features
self.final_batch_norm = nn.BatchNorm2d(self.in_loop_features,affine=False)
self.final_conv = nn.Conv2d(in_channels=self.in_loop_features,out_channels=self.output_features,kernel_size=self.kernel,stride = self.stride,padding=self.padding)
def forward(self,x : torch.Tensor)->torch.Tensor:
layer_output_list = []
for i in range(0,self.layer_count-1):
x_dummy = self.batch_norm_list[i](x)
x_dummy = F.relu(x_dummy)
x_dummy = self.conv_layers_list[i](x_dummy)
x_dummy = self.dropout(x_dummy)
layer_output_list.append(x_dummy)
x = torch.cat([x_dummy,x],axis = 1)
x = self.final_batch_norm(x)
x = self.final_conv(x)
temp = torch.cat(layer_output_list,axis=1)
x = torch.cat([x,temp],axis=1)
return x
class Transition_Down(nn.Module):
def __init__(self,features : int,dropout : int = 0.2,padding : int = 0):
super().__init__()
self.features = features
self.dropout = dropout
self.padding = padding
self.dropout_en = nn.Dropout(p=self.dropout)
self.batch_norm =nn.BatchNorm2d(self.features,affine=False)
self.conv = nn.Conv2d(in_channels=self.features,out_channels=self.features,kernel_size=(1,1),stride=(1,1),padding = self.padding)
self.maxpool = nn.MaxPool2d(kernel_size=(2,2),stride = (2,2),padding=self.padding)
def forward(self,x : torch.Tensor)->torch.Tensor:
x = self.batch_norm(x)
x = F.relu(x)
x = self.conv(x)
x = self.dropout_en(x)
x = self.maxpool(x)
return x
class Transition_Up(nn.Module):
def __init__(self,features : int, kernel : tuple = (2,2),padding : int = 0):
super().__init__()
self.features = features
self.kernel = kernel
self.padding = padding
self.conv_inv = nn.ConvTranspose2d(in_channels=self.features,out_channels=self.features,kernel_size=self.kernel,stride=(2,2),padding = self.padding)
def forward(self,x : torch.Tensor)->torch.Tensor:
return self.conv_inv(x)
class Tiramisu_Segmentation(nn.Module):
def __init__(self,layer_tiramisu : int = 57,dropout : int = 0.2,padding : int = 1, input_features : int = 1 , growth_rate : int = 16, first_conv_output_features : int = 48 , nclasses : int = 1):
super().__init__()
self.layer_tiramisu = layer_tiramisu
if self.layer_tiramisu == 103:
self.layer_list = [4,5,7,10,12,15,12,10,7,5,4]
elif self.layer_tiramisu == 67:
self.layer_list = [5,5,5,5,5,5,5,5,5,5,5]
else:
self.layer_list = [4,4,4,4,4,4,4,4,4,4,4]
self.nclasses = nclasses
self.dropout = dropout
self.padding =padding
self.input_features = input_features
self.growth_rate = growth_rate
self.first_conv_output_features = first_conv_output_features
self.filters_per_layer_encoder = []
#layers
self.dense_conv_block_list = nn.ModuleList([])
self.td_list = nn.ModuleList([])
self.conv_initial = nn.Conv2d(in_channels=self.input_features,out_channels=self.first_conv_output_features,kernel_size=(3,3),stride=(1,1),padding=1)
temp = 0
for i in range(0,5):
if i == 0:
self.dense_conv_block_list.append(Dense_Block(input_features=self.first_conv_output_features,output_features = self.growth_rate,layer_count = self.layer_list[i],padding=self.padding))
self.td_list.append(Transition_Down(features=(self.growth_rate*(self.layer_list[i]))+self.first_conv_output_features))
temp = self.first_conv_output_features + (self.growth_rate* self.layer_list[i])
else:
self.dense_conv_block_list.append(Dense_Block(input_features=temp,output_features = self.growth_rate,layer_count = self.layer_list[i],padding=self.padding))
self.td_list.append(Transition_Down(features=(self.growth_rate*(self.layer_list[i])+temp)))
temp = temp + (self.growth_rate*(self.layer_list[i]) )
self.filters_per_layer_encoder.append(temp)
self.mid_dense = Dense_Block(input_features=temp,output_features = self.growth_rate,layer_count = self.layer_list[5],padding=self.padding)
self.input_to_decoder_filters = temp + self.growth_rate * self.layer_list[5]
self.dense_conv_block_list_decoder = nn.ModuleList([])
self.tu_list = nn.ModuleList([])
controller = 2
for i in range(6,len(self.layer_list)):
self.tu_list.append(Transition_Up(features= self.input_to_decoder_filters))
self.dense_conv_block_list_decoder.append(Dense_Block(input_features=self.input_to_decoder_filters,output_features=self.growth_rate,layer_count=self.layer_list[i],padding = 1))
self.input_to_decoder_filters = self.growth_rate * self.layer_list[i] + self.filters_per_layer_encoder[i-controller]
# print(self.input_to_decoder_filters)
controller+=2
self.conv_final = nn.Conv2d(in_channels=self.input_to_decoder_filters,out_channels= self.nclasses,
kernel_size = (1,1), stride=(1,1))
self.softmax = nn.Softmax(dim=self.nclasses)
self.sigmoid = nn.Sigmoid()
def forward(self,x : torch.Tensor)->torch.Tensor:
x_skip_layers = []
x = self.conv_initial(x)
x_og = x
for i in range(len(self.dense_conv_block_list)):
x = self.dense_conv_block_list[i](x)
x = torch.cat([x_og,x],axis=1)
x_skip_layers.append(x)
# print(x.shape)
x = self.td_list[i](x)
x_og = x
x = self.mid_dense(x)
x = torch.cat([x_og,x],axis=1)
for i in range(len(self.dense_conv_block_list_decoder)):
x = self.tu_list[i](x)
x = self.dense_conv_block_list_decoder[i](x)
x = torch.cat([x,x_skip_layers[-(i+1)]],axis=1)
x = self.conv_final(x)
# print(x.shape)
# print(x.type)
if self.nclasses > 1:
return x
else:
x = self.sigmoid(x)
return x