-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgauss_jordan.py
124 lines (114 loc) · 4.96 KB
/
gauss_jordan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import pandas as pd
import numpy as np
import time
number_columns = 0
while number_columns < 2:
number_columns = int(input('Escriba el número de incógnitas de las ecuaciones: '))
if number_columns < 2:
print("No válido, intente de nuevo")
number_equation = number_columns
number_columns +=1
array = np.zeros((number_equation, number_columns+1))
array_comparation = np.zeros((number_equation, number_columns-1))
_RES_COLUMN = "res"
_TR_COLUMN = "transformed" #columna que indica si el pivote ya fue usado
matriz_df = pd.DataFrame(array,columns=[f"x{i+1}" for i in range(number_columns+1)],index=[f"ec{i+1}" for i in range(number_equation)])
matriz_comparation = pd.DataFrame(array_comparation,columns=[f"x{i+1}" for i in range(number_columns-1)],index=[f"ec{i+1}" for i in range(number_equation)])
matriz_df.columns = matriz_df.columns[:-2].tolist() + [_RES_COLUMN] + [_TR_COLUMN]
if number_columns > 2:
matriz_no_valid = [
matriz_comparation.iloc[1:,:number_columns-2].copy(),#esquina inferior izquierda
matriz_comparation.iloc[1:,1:number_columns-2].copy(),#esquina inferior derecha
matriz_comparation.iloc[1:,1:number_columns-2].copy(),#esquina inferior derecha
matriz_comparation.iloc[1:,1:number_columns-2].copy()#esquina inferior derecha
]
print("matriz_df")
print(matriz_df.iloc[:,:-1])
zeros_pivot = 0
for row_index in range(number_equation):
for column_index in range(number_columns):
value = float(input(f'Ingrese el valor de [{row_index},{column_index}]: '))
matriz_df.iloc[row_index, column_index] = value
matriz_comparation.iloc[row_index,row_index] = 1
if (matriz_df.iloc[row_index,row_index] == 0): zeros_pivot += 1
def transform_pivot_to_1(matriz, pivot):
print(f'F{pivot} => F{pivot} / {matriz.iloc[pivot,pivot]} ---------------')
if (matriz.iloc[pivot,pivot] == 0):
matriz, isValid = prepare_matrix(matriz, pivot)
return (matriz,isValid)
matriz.iloc[pivot] = matriz.iloc[pivot] / matriz.iloc[pivot,pivot]
matriz.iloc[pivot,-1] = 1
return (matriz,True)
def transform_to_0(matriz, pivot, row_index):
if pivot == row_index: return (matriz,True)
print(f'F{row_index} => F{row_index} + (F{pivot} * {-1} * {matriz.iloc[row_index,pivot]}) ---------------')
matriz.iloc[row_index] = matriz.iloc[row_index] + (((matriz.iloc[pivot]) * -1) * (matriz.iloc[row_index,pivot]))
matriz.iloc[row_index,-1] = 0
return (matriz,True)
def gauss_jordan(matriz, pivot):
# print(f'pivot => {pivot}--{range(matriz.shape[0]-1)}')
pivote_transform = False
isValid = True
for row_count in range(matriz.shape[0]):
# print(f'row_count => {row_count}')
if not pivote_transform:
if (matriz.iloc[row_count,pivot] != 1):
(matriz,isValid) = transform_pivot_to_1(matriz,pivot)
if not isValid:
return (matriz,False)
pivote_transform = True
if (matriz.iloc[row_count,pivot] != 0):
(matriz,isValid) = transform_to_0(matriz,pivot,row_count)
print(matriz.iloc[:,:-1])
return (matriz,True)
def prepare_matrix(matriz, pivot):
print('PREPARE')
row = matriz.iloc[pivot]
for i in range(matriz.shape[0]):
# print("(",matriz.iloc[i,pivot]," != 0) and ",matriz.iloc[i,-1]," == 0")
if (matriz.iloc[i,pivot] != 0) and matriz.iloc[i,-1] == 0:
row = matriz.iloc[i].copy()
matriz.iloc[i] = matriz.iloc[0]
matriz.iloc[0] = row
print(matriz.iloc[:,:-1])
return matriz, True
print(matriz_df.iloc[:,:-1])
return matriz, False
def validate_matrix(matriz):
if (zeros_pivot > number_equation-1):
print('LA MATRIZ NO TIENE SOLUCIÓN 1')
return matriz, False
for i in matriz.columns:
if i != _RES_COLUMN and i != _TR_COLUMN:
ceros = matriz[matriz[i] == 0]
if ceros.shape[0] == matriz.shape[0]:
print('LA MATRIZ NO TIENE SOLUCIÓN 2')
return matriz, False
return matriz, True
print('VALIDATE')
isValid = False
print(zeros_pivot," <= ",number_equation-1)
matriz_df,isValid = validate_matrix(matriz_df)
print(matriz_df.iloc[:,:-1])
if isValid:
count_column = 0
iterations_count = 0
while not matriz_comparation.equals(matriz_df.iloc[:, :-2]):
(matriz_df,isValid) = gauss_jordan(matriz_df, count_column)
if not isValid:
print('La matriz no tiene solución')
break
count_column += 1
iterations_count += 1
if count_column == matriz_df.columns.size-2: count_column = 0
# print("iterations_count => ",iterations_count)
if iterations_count > (number_columns**2)+10:
print("Límite de iteraciones, no se pudo solucionar la matriz")
isValid = False
break
time.sleep(0.5)
if isValid:
print("SOLUCIONADO:")
print(matriz_df.iloc[:,:-1])
else:
print("Sucedió un error")