-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcl_utils.py
200 lines (168 loc) · 6.53 KB
/
cl_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torchvision
from continual_learning.backbone_networks import LeNet_300_100, LeNet, vgg11, \
AlexNet, resnet20
from continual_learning.backbone_networks.vgg import custom_vgg
from continual_learning.datasets import MNIST, CIFAR10, CIFAR100, TinyImagenet
from continual_learning.methods import Naive
from continual_learning.methods.task_incremental.multi_task.gg import \
SingleTask, Pruning, SupermaskSuperposition, SuperMask, BatchEnsemble
from torch.nn.modules.batchnorm import _BatchNorm
from torchvision.transforms import transforms
def get_cl_dataset(name, model_name):
if name == 'mnist':
t = [
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize((32, 32)),
torchvision.transforms.Normalize((0.1307,), (0.3081,)),
]
if model_name == 'lenet-300-100':
t.append(torch.nn.Flatten())
t = torchvision.transforms.Compose(t)
dataset = MNIST(
data_folder='./datasets/mnist/MNIST/raw',
download_if_missing=True,
transformer=t,
test_transformer=t)
classes = 10
input_size = 1
# elif name == 'svhn':
# tt = [
# transforms.RandomCrop(32, padding=4),
# transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# transforms.Normalize((0.4376821, 0.4437697, 0.47280442), (0.19803012, 0.20101562, 0.19703614))]
#
# t = [
# transforms.ToTensor(),
# transforms.Normalize((0.4376821, 0.4437697, 0.47280442), (0.19803012, 0.20101562, 0.19703614))]
#
# # if 'resnet' in model_name:
# # tt = [transforms.Resize(256), transforms.CenterCrop(224)] + tt
# # t = [transforms.Resize(256), transforms.CenterCrop(224)] + t
#
# transform = transforms.Compose(t)
# train_transform = transforms.Compose(tt)
#
# train_set = torchvision.datasets.SVHN(
# root='./datasets/svhn', split='train', download=True, transform=train_transform)
#
# test_set = torchvision.datasets.SVHN(
# root='./datasets/svhn', split='test', download=True, transform=transform)
#
# input_size, classes = 3, 10
elif name == 'cifar10':
tt = [
transforms.ToTensor(),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010))]
t = [
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010))]
transform = transforms.Compose(t)
train_transform = transforms.Compose(tt)
dataset = CIFAR10(
data_folder='./datasets_cl/cifar10',
download_if_missing=True,
transformer=train_transform,
test_transformer=transform)
input_size, classes = 3, 10
elif name == 'cifar100':
tt = [
transforms.ToTensor(),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010))]
t = [
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010))]
transform = transforms.Compose(t)
train_transform = transforms.Compose(tt)
dataset = CIFAR100(
data_folder='./datasets_cl/cifar100',
download_if_missing=True,
transformer=train_transform, test_transformer=transform)
input_size, classes = 3, 100
elif name == 'tiny-imagenet':
tt = [
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(56),
transforms.Resize(64)
]
t = [
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))
]
transform = transforms.Compose(t)
train_transform = transforms.Compose(tt)
dataset = TinyImagenet(
data_folder='./datasets_cl/',
download_if_missing=True,
transformer=train_transform, test_transformer=transform)
input_size, classes = 3, 200
else:
assert False
return dataset, input_size, classes
def get_cl_model(name, input_size=None):
name = name.lower()
if name == 'lenet-300-100':
model = LeNet_300_100(input_size)
elif name == 'lenet-5':
model = LeNet(input_size)
elif 'vgg' in name:
# if 'bn' in name:
if name == 'vgg11':
model = vgg11(pretrained=False)
elif name == 'half-vgg11':
model = custom_vgg(
[32, 'M', 64, 'M', 128, 128, 'M', 256, 256, 'M', 256, 256, 'M'])
else:
assert False
for n, m in model.named_modules():
if hasattr(m, 'bias') and not isinstance(m, _BatchNorm):
if m.bias is not None:
if m.bias.sum() == 0:
m.bias = None
elif 'alexnet' in name:
model = AlexNet()
for n, m in model.named_modules():
if hasattr(m, 'bias') and not isinstance(m, _BatchNorm):
if m.bias is not None:
if m.bias.sum() == 0:
m.bias = None
elif 'resnet' in name:
if name == 'resnet20':
model = resnet20()
else:
assert False
for n, m in model.named_modules():
if hasattr(m, 'bias') and not isinstance(m, _BatchNorm):
if m.bias is not None:
if m.bias.sum() == 0:
m.bias = None
else:
assert False
return model
def get_cl_method(name, backbone, parameters, device):
name = name.lower()
if name == 'single':
return SingleTask()
elif name == 'batch_ensemble':
return BatchEnsemble(backbone)
elif name == 'naive':
return Naive()
elif name == 'pruning':
return Pruning(backbone=backbone, device=device, **parameters)
elif name == 'supsup':
return SupermaskSuperposition(backbone=backbone, **parameters)
elif name == 'supermask':
return SuperMask(device=device, **parameters)