-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathpreprocess.py
59 lines (45 loc) · 1.85 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# -*- coding: utf-8 -*-
import torch
import torch.utils.data as tud
from collections import Counter, defaultdict
BATCH_SIZE = 512
class GloveDataset(tud.Dataset):
def __init__(self, text, n_words=200000, window_size=5):
super(GloveDataset, self).__init__()
self.window_size = window_size
self.tokens = text.split(" ")[:n_words]
vocab = set(self.tokens)
self.word2id = {w:i for i, w in enumerate(vocab)}
self.id2word = {i:w for w, i in self.word2id.items()}
self.vocab_size = len(vocab)
self.id_tokens = [self.word2id[w] for w in self.tokens]
cooc_mat = defaultdict(Counter)
for i, w in enumerate(self.id_tokens):
start_i = max(i - self.window_size, 0)
end_i = min(i + self.window_size + 1, len(self.id_tokens))
for j in range(start_i, end_i):
if i != j:
c = self.id_tokens[j]
cooc_mat[w][c] += 1 / abs(j-i)
self.i_idx = list()
self.j_idx = list()
self.xij = list()
#Create indexes and x values tensors
for w, cnt in cooc_mat.items():
for c, v in cnt.items():
self.i_idx.append(w)
self.j_idx.append(c)
self.xij.append(v)
self.i_idx = torch.LongTensor(self.i_idx)
self.j_idx = torch.LongTensor(self.j_idx)
self.xij = torch.FloatTensor(self.xij)
def __len__(self):
return len(self.xij)
def __getitem__(self, idx):
return self.xij[idx], self.i_idx[idx], self.j_idx[idx]
traindataset = GloveDataset(open("text8_toy.txt").read())
id2word = traindataset.id2word
traindataloader = tud.DataLoader(traindataset, BATCH_SIZE, shuffle=True)
#for xij, i_idx, j_idx in traindataloader:
# print(xij, i_idx, j_idx)
# print('-----------')