-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathrpi_smi_adc_test.c
384 lines (345 loc) · 11.4 KB
/
rpi_smi_adc_test.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// Test of parallel AD9226 ADC using Raspberry Pi SMI (Secondary Memory Interface)
// For detailed description, see https://iosoft.blog
//
// Copyright (c) 2020 Jeremy P Bentham
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// v0.06 JPB 16/7/20 Tidied up for Github
#include <stdio.h>
#include <signal.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "rpi_dma_utils.h"
#include "rpi_smi_defs.h"
// Set zero for single value, non-zero for block read
#define USE_DMA 1
// Use test pin in place of GPIO mode setting (to check timing)
#define USE_TEST_PIN 0
// SMI cycle timings
#define SMI_NUM_BITS SMI_16_BITS
#define SMI_TIMING SMI_TIMING_20M
#if PHYS_REG_BASE==PI_4_REG_BASE // Timings for RPi v4 (1.5 GHz)
#define SMI_TIMING_1M 10, 38, 74, 38 // 1 MS/s
#define SMI_TIMING_10M 6, 6, 13, 6 // 10 MS/s
#define SMI_TIMING_20M 4, 5, 9, 5 // 19.74 MS/s
#define SMI_TIMING_25M 4, 3, 8, 4 // 25 MS/s
#define SMI_TIMING_31M 4, 3, 6, 3 // 31.25 MS/s
#else // Timings for RPi v0-3 (1 GHz)
#define SMI_TIMING_1M 10, 25, 50, 25 // 1 MS/s
#define SMI_TIMING_10M 4, 6, 13, 6 // 10 MS/s
#define SMI_TIMING_20M 2, 6, 13, 6 // 20 MS/s
#define SMI_TIMING_25M 2, 5, 10, 5 // 25 MS/s
#define SMI_TIMING_31M 2, 4, 6, 4 // 31.25 MS/s
#define SMI_TIMING_42M 2, 3, 6, 3 // 41.66 MS/s
#define SMI_TIMING_50M 2, 3, 5, 2 // 50 MS/s
#endif
// Number of raw bytes per ADC sample
#define SAMPLE_SIZE 2
// Number of samples to be captured, and number to be discarded
#define NSAMPLES 500
#define PRE_SAMP 24
// Voltage calibration
#define ADC_ZERO 2080
#define ADC_SCALE 410.0
// GPIO pin numbers
#define ADC_D0_PIN 12
#define ADC_NPINS 12
#define SMI_SOE_PIN 6
#define SMI_SWE_PIN 7
#define SMI_DREQ_PIN 24
#define TEST_PIN 25
// DMA request threshold
#define REQUEST_THRESH 4
// SMI register names for diagnostic print
char *smi_regstrs[] = {
"CS","LEN","A","D","DSR0","DSW0","DSR1","DSW1",
"DSR2","DSW2","DSR3","DSW3","DMC","DCS","DCA","DCD",""
};
// SMI CS register field names for diagnostic print
#define STRS(x) STRS_(x) ","
#define STRS_(...) #__VA_ARGS__
char *smi_cs_regstrs = STRS(SMI_CS_FIELDS);
// Structures for mapped I/O devices, and non-volatile memory
extern MEM_MAP gpio_regs, dma_regs;
MEM_MAP vc_mem, clk_regs, smi_regs;
// Pointers to SMI registers
volatile SMI_CS_REG *smi_cs;
volatile SMI_L_REG *smi_l;
volatile SMI_A_REG *smi_a;
volatile SMI_D_REG *smi_d;
volatile SMI_DMC_REG *smi_dmc;
volatile SMI_DSR_REG *smi_dsr;
volatile SMI_DSW_REG *smi_dsw;
volatile SMI_DCS_REG *smi_dcs;
volatile SMI_DCA_REG *smi_dca;
volatile SMI_DCD_REG *smi_dcd;
// Buffer for captured samples
uint16_t sample_data[NSAMPLES];
// Non-volatile memory size
#define VC_MEM_SIZE(nsamp) (PAGE_SIZE + ((nsamp)+4)*SAMPLE_SIZE)
void map_devices(void);
void fail(char *s);
void terminate(int sig);
void smi_start(int nsamples, int packed);
uint32_t *adc_dma_start(MEM_MAP *mp, int nsamp);
int adc_dma_end(void *buff, uint16_t *data, int nsamp);
void init_smi(int width, int ns, int setup, int hold, int strobe);
void disp_smi(void);
void mode_word(uint32_t *wp, int n, uint32_t mode);
float val_volts(int val);
int adc_gpio_val(void);
void disp_reg_fields(char *regstrs, char *name, uint32_t val);
void dma_wait(int chan);
int main(int argc, char *argv[])
{
void *rxbuff;
int i;
signal(SIGINT, terminate);
map_devices();
for (i=0; i<ADC_NPINS; i++)
gpio_mode(ADC_D0_PIN+i, GPIO_IN);
gpio_mode(SMI_SOE_PIN, GPIO_ALT1);
#if !USE_DMA
init_smi(SMI_NUM_BITS, SMI_TIMING_1M);
while (1)
{
smi_start(PRE_SAMP, 1);
usleep(20);
int val = adc_gpio_val();
printf("%4u %1.3f\n", val, val_volts(val));
sleep(1);
}
#else
init_smi(SMI_NUM_BITS, SMI_TIMING);
#if USE_TEST_PIN
gpio_mode(TEST_PIN, GPIO_OUT);
gpio_out(TEST_PIN, 0);
#endif
map_uncached_mem(&vc_mem, VC_MEM_SIZE(NSAMPLES+PRE_SAMP));
smi_dmc->dmaen = 1;
smi_cs->enable = 1;
smi_cs->clear = 1;
rxbuff = adc_dma_start(&vc_mem, NSAMPLES);
smi_start(NSAMPLES, 1);
while (dma_active(DMA_CHAN_A)) ;
adc_dma_end(rxbuff, sample_data, NSAMPLES);
disp_reg_fields(smi_cs_regstrs, "CS", *REG32(smi_regs, SMI_CS));
smi_cs->enable = smi_dcs->enable = 0;
for (i=0; i<NSAMPLES; i++)
printf("%1.3f\n", val_volts(sample_data[i]));
#endif
terminate(0);
return(0);
}
// Map GPIO, DMA and SMI registers into virtual mem (user space)
// If any of these fail, program will be terminated
void map_devices(void)
{
map_periph(&gpio_regs, (void *)GPIO_BASE, PAGE_SIZE);
map_periph(&dma_regs, (void *)DMA_BASE, PAGE_SIZE);
map_periph(&clk_regs, (void *)CLK_BASE, PAGE_SIZE);
map_periph(&smi_regs, (void *)SMI_BASE, PAGE_SIZE);
}
// Catastrophic failure in initial setup
void fail(char *s)
{
printf(s);
terminate(0);
}
// Free memory segments and exit
void terminate(int sig)
{
int i;
printf("Closing\n");
if (gpio_regs.virt)
{
for (i=0; i<ADC_NPINS; i++)
gpio_mode(ADC_D0_PIN+i, GPIO_IN);
}
if (smi_regs.virt)
*REG32(smi_regs, SMI_CS) = 0;
stop_dma(DMA_CHAN_A);
unmap_periph_mem(&vc_mem);
unmap_periph_mem(&smi_regs);
unmap_periph_mem(&dma_regs);
unmap_periph_mem(&gpio_regs);
exit(0);
}
// Start SMI, given number of samples, optionally pack bytes into words
void smi_start(int nsamples, int packed)
{
smi_l->len = nsamples + PRE_SAMP;
smi_cs->pxldat = (packed != 0);
smi_cs->enable = 1;
smi_cs->clear = 1;
smi_cs->start = 1;
}
// Start DMA for SMI ADC, return Rx data buffer
uint32_t *adc_dma_start(MEM_MAP *mp, int nsamp)
{
DMA_CB *cbs=mp->virt;
uint32_t *data=(uint32_t *)(cbs+4), *pindata=data+8, *modes=data+0x10;
uint32_t *modep1=data+0x18, *modep2=modep1+1, *rxdata=data+0x20, i;
// Get current mode register values
for (i=0; i<3; i++)
modes[i] = modes[i+3] = *REG32(gpio_regs, GPIO_MODE0 + i*4);
// Get mode values with ADC pins set to SMI
for (i=ADC_D0_PIN; i<ADC_D0_PIN+ADC_NPINS; i++)
mode_word(&modes[i/10], i%10, GPIO_ALT1);
// Copy mode values into 32-bit words
*modep1 = modes[1];
*modep2 = modes[2];
*pindata = 1 << TEST_PIN;
enable_dma(DMA_CHAN_A);
// Control blocks 0 and 1: enable SMI I/P pins
cbs[0].ti = DMA_SRCE_DREQ | (DMA_SMI_DREQ << 16) | DMA_WAIT_RESP;
#if USE_TEST_PIN
cbs[0].tfr_len = 4;
cbs[0].srce_ad = MEM_BUS_ADDR(mp, pindata);
cbs[0].dest_ad = REG_BUS_ADDR(gpio_regs, GPIO_SET0);
cbs[0].next_cb = MEM_BUS_ADDR(mp, &cbs[2]);
#else
cbs[0].tfr_len = 4;
cbs[0].srce_ad = MEM_BUS_ADDR(mp, modep1);
cbs[0].dest_ad = REG_BUS_ADDR(gpio_regs, GPIO_MODE0+4);
cbs[0].next_cb = MEM_BUS_ADDR(mp, &cbs[1]);
#endif
cbs[1].tfr_len = 4;
cbs[1].srce_ad = MEM_BUS_ADDR(mp, modep2);
cbs[1].dest_ad = REG_BUS_ADDR(gpio_regs, GPIO_MODE0+8);
cbs[1].next_cb = MEM_BUS_ADDR(mp, &cbs[2]);
// Control block 2: read data
cbs[2].ti = DMA_SRCE_DREQ | (DMA_SMI_DREQ << 16) | DMA_CB_DEST_INC;
cbs[2].tfr_len = (nsamp + PRE_SAMP) * SAMPLE_SIZE;
cbs[2].srce_ad = REG_BUS_ADDR(smi_regs, SMI_D);
cbs[2].dest_ad = MEM_BUS_ADDR(mp, rxdata);
cbs[2].next_cb = MEM_BUS_ADDR(mp, &cbs[3]);
// Control block 3: disable SMI I/P pins
cbs[3].ti = DMA_CB_SRCE_INC | DMA_CB_DEST_INC;
#if USE_TEST_PIN
cbs[3].tfr_len = 4;
cbs[3].srce_ad = MEM_BUS_ADDR(mp, pindata);
cbs[3].dest_ad = REG_BUS_ADDR(gpio_regs, GPIO_CLR0);
#else
cbs[3].tfr_len = 3 * 4;
cbs[3].srce_ad = MEM_BUS_ADDR(mp, &modes[3]);
cbs[3].dest_ad = REG_BUS_ADDR(gpio_regs, GPIO_MODE0);
#endif
start_dma(mp, DMA_CHAN_A, &cbs[0], 0);
return(rxdata);
}
// ADC DMA is complete, get data
int adc_dma_end(void *buff, uint16_t *data, int nsamp)
{
uint16_t *bp = (uint16_t *)buff;
int i;
for (i=0; i<nsamp+PRE_SAMP; i++)
{
if (i >= PRE_SAMP)
*data++ = bp[i] >> 4;
}
return(nsamp);
}
// Initialise SMI, given data width, time step, and setup/hold/strobe counts
// Step value is in nanoseconds: even numbers, 2 to 30
void init_smi(int width, int ns, int setup, int strobe, int hold)
{
int divi = ns / 2;
smi_cs = (SMI_CS_REG *) REG32(smi_regs, SMI_CS);
smi_l = (SMI_L_REG *) REG32(smi_regs, SMI_L);
smi_a = (SMI_A_REG *) REG32(smi_regs, SMI_A);
smi_d = (SMI_D_REG *) REG32(smi_regs, SMI_D);
smi_dmc = (SMI_DMC_REG *)REG32(smi_regs, SMI_DMC);
smi_dsr = (SMI_DSR_REG *)REG32(smi_regs, SMI_DSR0);
smi_dsw = (SMI_DSW_REG *)REG32(smi_regs, SMI_DSW0);
smi_dcs = (SMI_DCS_REG *)REG32(smi_regs, SMI_DCS);
smi_dca = (SMI_DCA_REG *)REG32(smi_regs, SMI_DCA);
smi_dcd = (SMI_DCD_REG *)REG32(smi_regs, SMI_DCD);
smi_cs->value = smi_l->value = smi_a->value = 0;
smi_dsr->value = smi_dsw->value = smi_dcs->value = smi_dca->value = 0;
if (*REG32(clk_regs, CLK_SMI_DIV) != divi << 12)
{
*REG32(clk_regs, CLK_SMI_CTL) = CLK_PASSWD | (1 << 5);
usleep(10);
while (*REG32(clk_regs, CLK_SMI_CTL) & (1 << 7)) ;
usleep(10);
*REG32(clk_regs, CLK_SMI_DIV) = CLK_PASSWD | (divi << 12);
usleep(10);
*REG32(clk_regs, CLK_SMI_CTL) = CLK_PASSWD | 6 | (1 << 4);
usleep(10);
while ((*REG32(clk_regs, CLK_SMI_CTL) & (1 << 7)) == 0) ;
usleep(100);
}
if (smi_cs->seterr)
smi_cs->seterr = 1;
smi_dsr->rsetup = smi_dsw->wsetup = setup;
smi_dsr->rstrobe = smi_dsw->wstrobe = strobe;
smi_dsr->rhold = smi_dsw->whold = hold;
smi_dmc->panicr = smi_dmc->panicw = 8;
smi_dmc->reqr = smi_dmc->reqw = REQUEST_THRESH;
smi_dsr->rwidth = smi_dsw->wwidth = width;
}
// Display SMI registers
void disp_smi(void)
{
volatile uint32_t *p=REG32(smi_regs, SMI_CS);
int i=0;
while (smi_regstrs[i][0])
{
printf("%4s=%08X ", smi_regstrs[i++], *p++);
if (i%8==0 || smi_regstrs[i][0]==0)
printf("\n");
}
}
// Get GPIO mode value into 32-bit word
void mode_word(uint32_t *wp, int n, uint32_t mode)
{
uint32_t mask = 7 << (n * 3);
*wp = (*wp & ~mask) | (mode << (n * 3));
}
// Convert ADC value to voltage
float val_volts(int val)
{
return((ADC_ZERO - val) / ADC_SCALE);
}
// Return ADC value, using GPIO inputs
int adc_gpio_val(void)
{
int v = *REG32(gpio_regs, GPIO_LEV0);
return((v>>ADC_D0_PIN) & ((1 << ADC_NPINS)-1));
}
// Display bit values in register
void disp_reg_fields(char *regstrs, char *name, uint32_t val)
{
char *p=regstrs, *q, *r=regstrs;
uint32_t nbits, v;
printf("%s %08X", name, val);
while ((q = strchr(p, ':')) != 0)
{
p = q + 1;
nbits = 0;
while (*p>='0' && *p<='9')
nbits = nbits * 10 + *p++ - '0';
v = val & ((1 << nbits) - 1);
val >>= nbits;
if (v && *r!='_')
printf(" %.*s=%X", q-r, r, v);
while (*p==',' || *p==' ')
p = r = p + 1;
}
printf("\n");
}
// EOF