-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpooling.py
218 lines (159 loc) · 7.58 KB
/
pooling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
from torch.nn import Parameter
from torch_scatter import scatter_add, scatter_max
from torch_geometric.utils import softmax
import numpy as np
import math
def uniform(size, tensor):
bound = 1.0 / math.sqrt(size)
if tensor is not None:
tensor.data.uniform_(-bound, bound)
def maybe_num_nodes(index, num_nodes=None):
return index.max().item() + 1 if num_nodes is None else num_nodes
def topk(x, ratio, batch, min_score=None, tol=1e-7):
if min_score is not None:
# Make sure that we do not drop all nodes in a graph.
scores_max = scatter_max(x, batch)[0][batch] - tol
scores_min = scores_max.clamp(max=min_score)
perm = torch.nonzero(x > scores_min).view(-1)
else:
num_nodes = scatter_add(batch.new_ones(x.size(0)), batch, dim=0)
batch_size, max_num_nodes = num_nodes.size(0), num_nodes.max().item()
cum_num_nodes = torch.cat(
[num_nodes.new_zeros(1),
num_nodes.cumsum(dim=0)[:-1]], dim=0)
index = torch.arange(batch.size(0), dtype=torch.long, device=x.device)
index = (index - cum_num_nodes[batch]) + (batch * max_num_nodes)
dense_x = x.new_full((batch_size * max_num_nodes, ), -2)
dense_x[index] = x
dense_x = dense_x.view(batch_size, max_num_nodes)
_, perm = dense_x.sort(dim=-1, descending=True)
perm = perm + cum_num_nodes.view(-1, 1)
perm = perm.view(-1)
k = (ratio * num_nodes.to(torch.float)).ceil().to(torch.long)
mask = [
torch.arange(k[i], dtype=torch.long, device=x.device) +
i * max_num_nodes for i in range(batch_size)
]
mask = torch.cat(mask, dim=0)
perm = perm[mask]
return perm
def filter_adj(edge_index, edge_attr, perm, num_nodes=None):
num_nodes = maybe_num_nodes(edge_index, num_nodes)
mask = perm.new_full((num_nodes, ), -1)
i = torch.arange(perm.size(0), dtype=torch.long, device=perm.device)
mask[perm] = i
row, col = edge_index
row, col = mask[row], mask[col]
mask = (row >= 0) & (col >= 0)
row, col = row[mask], col[mask]
if edge_attr is not None:
edge_attr = edge_attr[mask]
return torch.stack([row, col], dim=0), edge_attr
class TopKPooling(torch.nn.Module):
r""":math:`\mathrm{top}_k` pooling operator from the `"Graph U-Nets"
<https://arxiv.org/abs/1905.05178>`_, `"Towards Sparse
Hierarchical Graph Classifiers" <https://arxiv.org/abs/1811.01287>`_
and `"Understanding Attention and Generalization in Graph Neural
Networks" <https://arxiv.org/abs/1905.02850>`_ papers
if min_score :math:`\tilde{\alpha}` is None:
.. math::
\mathbf{y} &= \frac{\mathbf{X}\mathbf{p}}{\| \mathbf{p} \|}
\mathbf{i} &= \mathrm{top}_k(\mathbf{y})
\mathbf{X}^{\prime} &= (\mathbf{X} \odot
\mathrm{tanh}(\mathbf{y}))_{\mathbf{i}}
\mathbf{A}^{\prime} &= \mathbf{A}_{\mathbf{i},\mathbf{i}}
if min_score :math:`\tilde{\alpha}` is a value in [0, 1]:
.. math::
\mathbf{y} &= \mathrm{softmax}(\mathbf{X}\mathbf{p})
\mathbf{i} &= \mathbf{y}_i > \tilde{\alpha}
\mathbf{X}^{\prime} &= (\mathbf{X} \odot \mathbf{y})_{\mathbf{i}}
\mathbf{A}^{\prime} &= \mathbf{A}_{\mathbf{i},\mathbf{i}},
where nodes are dropped based on a learnable projection score
:math:`\mathbf{p}`.
Args:
in_channels (int): Size of each input sample.
ratio (float): Graph pooling ratio, which is used to compute
:math:`k = \lceil \mathrm{ratio} \cdot N \rceil`.
This value is ignored if min_score is not None.
(default: :obj:`0.5`)
min_score (float, optional): Minimal node score :math:`\tilde{\alpha}`
which is used to compute indices of pooled nodes
:math:`\mathbf{i} = \mathbf{y}_i > \tilde{\alpha}`.
When this value is not :obj:`None`, the :obj:`ratio` argument is
ignored. (default: :obj:`None`)
multiplier (float, optional): Coefficient by which features gets
multiplied after pooling. This can be useful for large graphs and
when :obj:`min_score` is used. (default: :obj:`1`)
nonlinearity (torch.nn.functional, optional): The nonlinearity to use.
(default: :obj:`torch.tanh`)
"""
def __init__(self, in_channels, ratio=0.5, min_score=None, multiplier=1,
nonlinearity=torch.tanh):
super(TopKPooling, self).__init__()
self.in_channels = in_channels
self.ratio = ratio
self.min_score = min_score
self.multiplier = multiplier
self.nonlinearity = nonlinearity
self.weight = Parameter(torch.Tensor(1, in_channels))
self.reset_parameters()
def reset_parameters(self):
size = self.in_channels
uniform(size, self.weight)
def forward(self, x, edge_index, edge_attr=None, batch=None, attn=None):
""""""
if batch is None:
batch = edge_index.new_zeros(x.size(0))
attn = x if attn is None else attn
attn = attn.unsqueeze(-1) if attn.dim() == 1 else attn
score = (attn * self.weight).sum(dim=-1)
import ipdb
ipdb.set_trace()
if self.min_score is None:
score = self.nonlinearity(score / self.weight.norm(p=2, dim=-1))
else:
score = softmax(score, batch)
perm = topk(score, self.ratio, batch, self.min_score)
x = x[perm] * score[perm].view(-1, 1)
x = self.multiplier * x if self.multiplier != 1 else x
ipdb.set_trace()
batch = batch[perm]
edge_index, edge_attr = filter_adj(edge_index, edge_attr, perm,
num_nodes=score.size(0))
return x, edge_index, edge_attr, batch, perm, score[perm]
def __repr__(self):
return '{}({}, {}={}, multiplier={})'.format(
self.__class__.__name__, self.in_channels,
'ratio' if self.min_score is None else 'min_score',
self.ratio if self.min_score is None else self.min_score,
self.multiplier)
class TopKEdgePooling(torch.nn.Module):
def __init__(self, min_score=None, percentage=None):
super(TopKEdgePooling, self).__init__()
self.min_score = min_score
self.percentage = percentage
@staticmethod
def process_edge_weights(edge_weights):
return torch.mean(edge_weights, 1).squeeze()
def forward(self, edge_index, edge_weights, return_kept_index=False):
if return_kept_index and self.percentage < 1.0:
p_edge_weights = self.process_edge_weights(edge_weights)
sorted_inds = torch.argsort(p_edge_weights, descending=True)
kept_index = sorted_inds[:int(len(sorted_inds) * self.percentage)]
# kept = p_edge_weights >= self.min_score
return edge_index[:, kept_index], edge_weights[kept_index], kept_index
else:
return edge_index, edge_weights, torch.arange(edge_index.shape[1]).to(edge_index.device)
class RandomEdgePooling(torch.nn.Module):
def __init__(self, percentage=None):
super(RandomEdgePooling, self).__init__()
self.percentage = percentage
@staticmethod
def process_edge_weights(edge_weights):
return torch.mean(edge_weights, 1).squeeze()
def forward(self, edge_index, edge_weights, return_kept_index=False):
rand_inds = torch.randperm(int(edge_index.shape[1] * self.percentage))
edge_index = edge_index[:, rand_inds]
edge_weights = edge_weights[rand_inds]
return edge_index, edge_weights, rand_inds