-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEval.hs
357 lines (300 loc) · 13 KB
/
Eval.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
{-# LANGUAGE ExistentialQuantification #-}
module Eval
( eval,
Env,
nullEnv
) where
import Control.Monad
import Control.Monad.Except
import Data.Char (toLower)
import Data.List (genericReplicate)
import Data.IORef
import AST
import Error
{- No problem parsing strings, they just have to be entered right
- sush as : '(+ 1 \"foo\")' will work in powershell -}
------------------------------------------------------------------------
-- IORef
------------------------------------------------------------------------
type Env = IORef [(String, IORef LispVal)]
nullEnv :: IO Env
nullEnv = newIORef []
isBound :: Env -> String -> IO Bool
isBound envRef var = readIORef envRef >>= return . maybe False (const True)
. lookup var
getVar :: Env -> String -> IOThrowsError LispVal
getVar envRef var = do
env <- liftIO $ readIORef envRef
maybe (throwError $ UnboundVar "Getting an unbound variable" var)
(liftIO . readIORef)
(lookup var env)
setVar :: Env -> String -> LispVal -> IOThrowsError LispVal
setVar envRef var value = do
env <- liftIO $ readIORef envRef
maybe (throwError $ UnboundVar "Setting an unbound variable" var)
(liftIO . (flip writeIORef value))
(lookup var env)
return value
defineVar :: Env -> String -> LispVal -> IOThrowsError LispVal
defineVar envRef var value = do
alreadyDefined <- liftIO $ isBound envRef var
if alreadyDefined
then setVar envRef var value >> return value
else liftIO $ do
valueRef <- newIORef value
env <- readIORef envRef
writeIORef envRef ((var, valueRef) : env)
return value
bindVars :: Env -> [(String, LispVal)] -> IO Env
bindVars envRef bindings = readIORef envRef >>= extendEnv bindings >>= newIORef
where extendEnv bindings env = liftM (++ env) (mapM addBinding bindings)
addBinding (var, value) = do ref <- newIORef value
return (var, ref)
------------------------------------------------------------------------
-- Evaluating stuff
------------------------------------------------------------------------
unpackNum :: LispVal -> ThrowsError Integer
unpackNum (Number n) = return n
unpackNum (String n) = let parsed = reads n :: [(Integer, String)] in
if null parsed
then throwError $ TypeMismatch "number" $ String n
else return $ fst $ parsed !! 0
unpackNum (List [n]) = unpackNum n
unpackNum notNum = throwError $ TypeMismatch "number" notNum
unpackStr :: LispVal -> ThrowsError String
unpackStr (String s) = return s
unpackStr (Number s) = return $ show s
unpackStr (Bool s) = return $ show s
unpackStr notString = throwError $ TypeMismatch "string" notString
unpackBool :: LispVal -> ThrowsError Bool
unpackBool (Bool b) = return b
unpackBool notBool = throwError $ TypeMismatch "boolean" notBool
unpackAtom :: LispVal -> ThrowsError String
unpackAtom (Atom a) = return a
unpackAtom notAtom = throwError $ TypeMismatch "atom" notAtom
unpackChar :: LispVal -> ThrowsError Char
unpackChar (Character c) = return c
unpackChar (String [c]) = return c
unpackChar (Number n) = if length numStr == 1
then return $ head numStr
else throwError $ TypeMismatch "char" $ Number n
where numStr = show n
unpackChar notChar = throwError $ TypeMismatch "char" notChar
numericBinop :: (Integer -> Integer -> Integer) -> SchemeFunc
numericBinop op [] = throwError $ NumArgs 2 []
numericBinop op singleVal@[_] = throwError $ NumArgs 2 singleVal
numericBinop op params = mapM unpackNum params >>= return . Number . foldl1 op
boolBinop :: (LispVal -> ThrowsError a) -> (a -> a -> Bool) -> [LispVal]
-> ThrowsError LispVal
boolBinop unpacker op args = if length args /= 2
then throwError $ NumArgs 2 args
else do
first <- unpacker $ args !! 0
second <- unpacker $ args !! 1
return . Bool $ op first second
numBoolBinop = boolBinop unpackNum
strBoolBinop = boolBinop unpackStr
boolBoolBinop = boolBinop unpackBool
boolOp :: (LispVal -> Bool) -> SchemeFunc
boolOp op [] = throwError $ NumArgs 1 []
boolOp op [param] = return . Bool . op $ param
boolOp op multiArgs = throwError $ NumArgs 1 multiArgs
isSym :: LispVal -> Bool
isSym (Atom _) = True
isSym _ = False
isStr :: LispVal -> Bool
isStr (String _) = True
isStr _ = False
isNum :: LispVal -> Bool
isNum (Number _) = True
isNum _ = False
isBool :: LispVal -> Bool
isBool (Bool _) = True
isBool _ = False
isChar :: LispVal -> Bool
isChar (Character _) = True
isChar _ = False
type SchemeFunc = [LispVal] -> ThrowsError LispVal
car :: SchemeFunc
car [List (x:xs)] = return x
car [DottedList (x:xs) _] = return x
car [badArg] = throwError $ TypeMismatch "pair" badArg
car badArgList = throwError $ NumArgs 1 badArgList
cdr :: SchemeFunc
cdr [List (x:xs)] = return $ List xs
cdr [DottedList [_] x] = return x
cdr [badArg] = throwError $ TypeMismatch "pair" badArg
cdr badArgList = throwError $ NumArgs 1 badArgList
cons :: SchemeFunc
cons [x1, List []] = return $ List [x1]
cons [x, List xs] = return . List $ x:xs
cons [x, DottedList xs xlast] = return $ DottedList (x:xs) xlast
cons [x1, x2] = return $ DottedList [x1] x2
cons badArgList = throwError $ NumArgs 2 badArgList
eqv :: SchemeFunc
eqv [(Bool arg1), (Bool arg2)] = return . Bool $ arg1 == arg2
eqv [(Number arg1), (Number arg2)] = return . Bool $ arg1 == arg2
eqv [(String arg1), (String arg2)] = return . Bool $ arg1 == arg2
eqv [(Character arg1), (Character arg2)] = return . Bool $ arg1 == arg2
eqv [(Atom arg1), (Atom arg2)] = return . Bool $ arg1 == arg2
eqv [(DottedList xs x), (DottedList ys y)] = eqv [List $ xs ++ [x], List $ ys ++ [y]]
eqv [(List arg1), (List arg2)] = return . Bool $ (length arg1 == length arg2)
&& (all eqvPair $ zip arg1 arg2)
where eqvPair (x1, x2) = case eqv [x1, x2] of
Left err -> False
Right (Bool val) -> val
eqv [_, _] = return $ Bool False
eqv badArgList = throwError $ NumArgs 2 badArgList
data Unpacker = forall a. Eq a => AnyUnpacker (LispVal -> ThrowsError a)
unpackEquals :: LispVal -> LispVal -> Unpacker -> ThrowsError Bool
unpackEquals arg1 arg2 (AnyUnpacker unpacker) =
do unpacked1 <- unpacker arg1
unpacked2 <- unpacker arg2
return $ unpacked1 == unpacked2
`catchError` (const $ return False)
equal :: SchemeFunc
equal [(DottedList xs x), (DottedList ys y)] = equal [List $ xs ++ [x],
List $ ys ++ [y]]
equal [(List arg1), (List arg2)] = return . Bool $ (length arg1 == length arg2)
&& (all equalPair $ zip arg1 arg2)
where equalPair (x1, x2) = case equal [x1, x2] of
Left err -> False
Right (Bool val) -> val
equal [arg1, arg2] = do
primitiveEquals <- liftM or $ mapM (unpackEquals arg1 arg2)
[AnyUnpacker unpackNum, AnyUnpacker unpackStr,
AnyUnpacker unpackBool]
eqvEquals <- eqv [arg1, arg2]
return . Bool $ (primitiveEquals || let (Bool x) = eqvEquals in x)
equal badArgList = throwError $ NumArgs 2 badArgList
cmpNoCase :: (String -> String -> Bool) -> (String -> String -> Bool)
cmpNoCase op = (\s1 s2 -> op (map toLower s1) (map toLower s2))
strlen :: SchemeFunc
strlen [s] = unpackStr s >>= return . Number . toInteger . length
strlen badArgs = throwError $ NumArgs 1 badArgs
strSym :: SchemeFunc
strSym [s] = unpackStr s >>= return . Atom
strSym badArgs = throwError $ NumArgs 1 badArgs
symStr :: SchemeFunc
symStr [a] = unpackAtom a >>= return . String
makeStr :: SchemeFunc
makeStr [len] = makeStr [len, Character '\0']
makeStr [len, c] = do
n <- unpackNum len
c <- unpackChar c
return . String $ genericReplicate n c
makeStr badArgs = throwError $ NumArgs 1 badArgs
strRef :: SchemeFunc
strRef [str, k] = do
s <- unpackStr str
i <- unpackNum k
if length s < fromIntegral i
then throwError $ BadIndex str k
else return . Character $ s !! fromIntegral i
buildStr :: SchemeFunc
buildStr chars = mapM unpackChar chars >>= return . String
primitives :: [(String, SchemeFunc)]
primitives = [("+", numericBinop (+)),
("-", numericBinop (-)),
("*", numericBinop (*)),
("/", numericBinop div),
("mod", numericBinop mod),
("quotient", numericBinop quot),
("remainder", numericBinop rem),
("=", numBoolBinop (==)),
("<", numBoolBinop (<)),
(">", numBoolBinop (>)),
("/=", numBoolBinop (/=)),
(">=", numBoolBinop (>=)),
("<=", numBoolBinop (<=)),
("&&", boolBoolBinop (&&)),
("||", boolBoolBinop (||)),
("string=?", strBoolBinop (==)),
("string<?", strBoolBinop (<)),
("string>?", strBoolBinop (>)),
("string<=?", strBoolBinop (<=)),
("string>=?", strBoolBinop (>=)),
("string-ci=?", strBoolBinop $ cmpNoCase (==)),
("string-ci<?", strBoolBinop $ cmpNoCase (<)),
("string-ci>?", strBoolBinop $ cmpNoCase (>)),
("string-ci<=?", strBoolBinop $ cmpNoCase (<=)),
("string-ci>=?", strBoolBinop $ cmpNoCase (>=)),
("string->symbol", strSym),
("symbol->string", symStr),
("string-length", strlen),
("make-string", makeStr),
("string-ref", strRef),
("string", buildStr),
("symbol?", boolOp isSym),
("string?", boolOp isStr),
("number?", boolOp isNum),
("bool?", boolOp isBool),
("char?", boolOp isChar),
("car", car),
("cdr", cdr),
("cons", cons),
("eq?", eqv),
("eqv?", eqv),
("equal?", equal)
]
apply :: String -> SchemeFunc
apply func args = maybe (throwError $ NotFunction
"Unrecognized primitive function args" func)
($ args)
(lookup func primitives)
evalTest :: Env -> LispVal -> IOThrowsError Bool
evalTest _ (Atom "else") = return True
evalTest env test = liftThrows . unpackBool =<< eval env test
evalCondResult :: Env -> Bool -> [LispVal] -> IOThrowsError LispVal
evalCondResult _ b [] = return $ Bool b
evalCondResult env b xs = return . last =<< mapM (eval env) xs
cond :: Env -> [LispVal] -> IOThrowsError LispVal
cond _ [] = throwError $ UnendedExpr "cond terminated without result"
cond env (List (test:xs) : rest) = do
result <- evalTest env test
if result then evalCondResult env result xs
else cond env rest
cond _ (badArg : rest) = throwError $ TypeMismatch "pair" badArg
checkClause :: LispVal -> [LispVal] -> ThrowsError Bool
checkClause key [] = return False
checkClause key (x:xs) = do
(Bool result) <- eqv [key, x]
if result then return True
else checkClause key xs
caseEval :: Env -> LispVal -> [LispVal] -> IOThrowsError LispVal
caseEval _ key [] = throwError $ UnendedExpr "case terminated without result"
caseEval env key (List ((List datums):exprs):rest) = do
foundMatch <- liftThrows $ checkClause key datums
if foundMatch then return . last =<< mapM (eval env) exprs
else caseEval env key rest
caseEval _ key (List (badCheck:exprs):rest) = throwError $ TypeMismatch "case clause"
badCheck
caseEval _ key badArgs = throwError $ TypeMismatch "list" $ List badArgs
eval :: Env -> LispVal -> IOThrowsError LispVal
eval env val@(String _) = return val
eval env val@(Number _) = return val
eval env val@(Bool _) = return val
eval env val@(Character _) = return val
-- variables
eval env (Atom id) = getVar env id
eval env (List [Atom "set!", Atom var, form]) =
eval env form >>= setVar env var
eval env (List [Atom "define", Atom var, form]) =
eval env form >>= defineVar env var
-- conditionals
eval env (List [Atom "if", pred, conseq, alt]) =
do result <- eval env pred
case result of
Bool False -> eval env alt
Bool True -> eval env conseq
otherwise -> throwError $ TypeMismatch "boolean" result
-- cond
eval env (List ((Atom "cond") : clauses)) = cond env clauses
-- case
eval env (List ((Atom "case") : key : rest)) = do k <- eval env key
caseEval env k rest
-- list
eval env (List [Atom "quote", val]) = return val
-- dotted list
eval env (List (Atom func:args)) = mapM (eval env) args >>= liftThrows . apply func
eval env badForm = throwError $ BadSpecialForm "Unrecognized special form" badForm