-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_discriminator.py
executable file
·213 lines (173 loc) · 8.61 KB
/
train_discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import copy
import numpy as np
import random
import os
import pickle
import yaml
from easydict import EasyDict
import torch
from discrimintor import model, data, runner, utils
from discrimintor.data import GEOMLabelDataset
from discrimintor.utils import logger
from torch_geometric.transforms import Compose
def conformations_split(gen_data):
# 假设gen_data是一个列表,里面是对象,每个对象有pos_gen和num_node两个属性
# pos_gen是一个(num_repeat * num_node, 3)的张量,num_node是一个标量
# 我们想把每个对象的pos_gen按照num_node切分成num_repeat个对象,每个对象的pos_gen是(num_node, 3)的张量
split_data = []
# 遍历gen_data中的每个对象
for obj in gen_data:
# 获取对象的pos_gen和num_node属性
pos_gen = obj.pos_gen
num_node = len(obj.atom_type)
# 计算num_repeat的值,也就是要切分成多少个对象
num_repeat = pos_gen.size(0) // num_node
# 按照num_node对pos_gen进行切分,得到一个长度为num_repeat的列表,每个元素是一个(num_node, 3)的张量
pos_gen_list = torch.split(pos_gen, num_node, dim=0)
num = int(len(pos_gen_list) / 2)
# 遍历pos_gen_list中的每个元素
for pos in pos_gen_list[:num]:
# 创建一个新的对象,复制原对象的所有属性,除了pos_gen
new_obj = copy.copy(obj)
# 将新对象的pos_gen属性设置为当前元素
new_obj.pos = pos
# 将新对象添加到split_data列表中
split_data.append(new_obj)
return split_data
# 最后split_data列表中就有len(gen_data) * num_repeat个对象,每个对象的pos_gen属性是(num_node, 3)的张量
def get_data(gen_dir, true_dir):
"""
数据预处理
1. 处理true_dir中的数据:图扩充(3跳以内的邻居进行连线),从pos中计算边距离d,AddPlaceHolder(),utils.AddEdgeName()
2. 处理gen_dir中的数据:gen_data中的每个样本中含有多个构象,将其分离开来,并更新距离值。
"""
# prepare ture data
with open(true_dir, 'rb') as fin:
real_data = pickle.load(fin)
transform = Compose([
utils.AddHigherOrderEdges(order=config.model.order),
utils.AddEdgeLength(),
utils.AddPlaceHolder(),
utils.AddEdgeName()
])
for i in range(len(real_data)):
real_data[i] = transform(real_data[i])
# prepare generative data
with open(gen_dir, 'rb') as fin:
gen_data = pickle.load(fin)
gen_data = conformations_split(gen_data) # 将每个构象作为一个样本
t = utils.AddEdgeLength() # 更新边距离
for i in range(len(gen_data)):
gen_data[i] = t(gen_data[i])
# 遍历 list2 中的每个对象, 删除多余属性,并对生成的多个构象进行处理(每个构象单独作为一个样本)
for obj2 in gen_data:
# 遍历 obj2 的属性
for attr_name in list(obj2.keys):
# 如果属性名不在 list1 的第一个对象中,则删除该属性
if attr_name not in real_data[0].keys:
delattr(obj2, attr_name)
for item in real_data:
if hasattr(item, 'totalenergy'):
delattr(item, 'totalenergy')
if hasattr(item, 'boltzmannweight'):
delattr(item, 'boltzmannweight')
train_data = real_data + gen_data
train_label = torch.zeros(len(train_data))
train_label[:len(real_data)] = 1. # 真实数据为1,生成数据为0
print("true_data = %d, gen_data = %d"%(len(real_data), len(gen_data)))
return train_data, train_label
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='confgf')
# parser.add_argument('--config_path', type=str, help='path of dataset', default="bash_sde/qm9_ema_discriminator.yml")
parser.add_argument('--config_path', type=str, help='path of dataset', default="config/qm9_dg_default.yml")
parser.add_argument('--seed', type=int, default=2021, help='overwrite config seed')
args = parser.parse_args()
with open(args.config_path, 'r') as f:
config = yaml.safe_load(f)
config = EasyDict(config)
config.train.save_path = os.path.join(config.train.save_path, config.scheme.framework)
logger.configure(dir=os.path.join(config.train.save_path, config.model.name))
if args.seed != 2022:
config.train.seed = args.seed
if config.train.save and config.train.save_path is not None:
config.train.save_path = os.path.join(config.train.save_path, config.model.name)
if not os.path.exists(config.train.save_path):
os.makedirs(config.train.save_path)
# check device
gpus = list(filter(lambda x: x is not None, config.train.gpus))
assert torch.cuda.device_count() >= len(gpus), 'do you set the gpus in config correctly?'
device = torch.device(gpus[0]) if len(gpus) > 0 else torch.device('cpu')
logger.log("Let's use", len(gpus), "GPUs!")
logger.log("Using device %s as main device" % device)
config.train.gpus = gpus
logger.log(config)
# set random seed
np.random.seed(config.train.seed)
random.seed(config.train.seed)
torch.manual_seed(config.train.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(config.train.seed)
torch.cuda.manual_seed_all(config.train.seed)
torch.backends.cudnn.benchmark = True
logger.log('set seed for random, numpy and torch')
load_path = os.path.join(config.data.base_path, '%s_processed' % config.data.dataset)
logger.log('loading data from %s' % load_path)
if config.scheme.framework == 'dsm':
model = model.DistanceScoreMatch(config)
elif config.scheme.framework == 'sde': # this
model = model.SDE(config)
elif config.scheme.framework == 'time-continuous':
model = model.ContinuousScoreMatch(config)
elif config.scheme.framework == 'diffusion':
model = model.DenoisingDiffusion(config)
else:
raise 12312
train_data = []
val_data = []
test_data = []
try:
with open(load_path + '/discriminator_train_data.pkl', 'rb') as f:
train_data = pickle.load(f)
with open(load_path + '/discriminator_train_labels.pkl', 'rb') as f:
train_label = pickle.load(f)
except FileNotFoundError:
gen_dir = config.train.gen_dir
true_dir = config.train.true_dir
num_data = config.train.num_data
train_data, train_label = get_data(gen_dir, true_dir)
with open(load_path + '/discriminator_train_data.pkl', "wb") as f:
pickle.dump(train_data, f)
with open(load_path + '/discriminator_train_labels.pkl', "wb") as f:
pickle.dump(train_label, f)
transform = None
train_dataset = GEOMLabelDataset(data=train_data, label=train_label, transform=transform)
logger.log('train size : %d ' % (len(train_data)))
logger.log('loading train data done!')
optimizer = utils.get_optimizer(config.train.optimizer, model)
scheduler = utils.get_scheduler(config.train.scheduler, optimizer)
try:
with open(load_path + '/discriminator_test_data.pkl', 'rb') as f:
test_data = pickle.load(f)
with open(load_path + '/discriminator_test_labels.pkl', 'rb') as f:
test_label = pickle.load(f)
except FileNotFoundError:
test_data, test_label = get_data(gen_dir=config.test.gen_dir,
true_dir=config.test.true_dir)
with open(load_path + '/discriminator_test_data.pkl', "wb") as f:
pickle.dump(test_data, f)
with open(load_path + '/discriminator_test_labels.pkl', "wb") as f:
pickle.dump(test_label, f)
test_dataset = GEOMLabelDataset(data=test_data, label=test_label, transform=transform)
logger.log('test size : %d ' % (len(test_data)))
logger.log('loading test data done!')
solver = runner.DefaultRunner(train_dataset, val_data, train_dataset, None, model, optimizer, scheduler, gpus,
None, config)
solver.train()
# 测试时将下面的注释取消,并将solver.train()注释掉。
# disc_checkpoint = 'checkpoints/discriminator/sde/qm9_dg_default2021new/checkpoint289'
# logger.log("Load discriminator checkpoint from %s" % disc_checkpoint)
# state = torch.load(disc_checkpoint)
#
# model.load_state_dict(state["model"])
# solver.test(model)