-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDelivery Route Optimization with Python(Pandas)
53 lines (45 loc) · 2.44 KB
/
Delivery Route Optimization with Python(Pandas)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# #!/usr/bin/python
# # -*- coding: UTF-8 -*-
import pandas as pd #data mining and analysis with data from a shoes branch_supply chain operations solution
import numpy as np
data = pd.read_excel('出库数据.xlsx',sheet_name=1)
du = pd.DataFrame(data)
finpool = du.sort_values(by=['单票最低运费','续重价格'])
capcoln=finpool.loc[:, ['始发地代码']]
capcoln.sort_values(by=['始发地代码'])
caplist=capcoln['始发地代码'].drop_duplicates().values.tolist() #去重
print(caplist) #从‘出库数据’中获得始发地省会城市序号的list: 21 beginning cities
demcoln=finpool.loc[:, ['目的地代码']]
demcoln.sort_values(by=['目的地代码'])
demlist=demcoln['目的地代码'].drop_duplicates().values.tolist() #去重
print(demlist) #从‘出库数据’中获得目的地城市序号的list
data1 = pd.read_excel('出库数据.xlsx', sheet_name=2)
dv = pd.DataFrame(data1)
evalupool = dv.sort_values(by=['单票最低运费','续重价格']) #调取(发到A地的)被取缔仓(在B地)待转移(到C地)的货物数量q,跟(发到A地的)替代发货仓(在C地)的运费报价相结合来计算转移后的成本;
data2=pd.read_excel('出库数据.xlsx', sheet_name=4)
dk=data2.loc[:, ['始发地代码','目的地代码','周均重量']]
weight_pool = pd.DataFrame(dk)
# print(weight_pool.head())
for i in range(len(demlist)):
dest_weight = weight_pool[weight_pool['目的地代码']==demlist[i]]
current_weight = dest_weight['周均重量'].values
#print(current_weight)
# print(dest_weight)
min_price = [1000000000000000]
for j in range(len(caplist)):
route_end = evalupool[evalupool['目的地'] == demlist[i]]
route_cost = route_end[route_end['始发地'] == caplist[j]]
begin_weight = route_cost['起始重量'].values
# print(begin_weight)
lowest_price = route_cost['单票最低运费'].values
# print(lowest_price)
per_price = route_cost['续重价格'].values
if current_weight <= begin_weight:
current_price = lowest_price
else:
current_price = lowest_price + per_price*(current_weight - begin_weight)
if current_price < min_price:
min_price = current_price
current_supply = caplist[j]
current_dest = demlist[i]
print(current_supply, current_dest, min_price[0])