This repository contains the implementation code for our NeurIPS 2024 paper Decoupled Kullback-Leibler (DKL) Divergence Loss, arXiv.
# | Method | Model | Acc | log |
---|---|---|---|---|
1 | FixMatch | ViT-Small | 69.89 | log |
2 | FixMatch-dkl | ViT-Small | 70.57 | log |
3 | MeanTeacher | ViT-Small | 67.49 | log |
4 | MeanTeacher-dkl | ViT-Small | 68.75 | log |
Please refer to https://github.com/microsoft/Semi-supervised-learning.git for environment setup.
For the semi-supervised learning task:
cd Semi-supervised-learning-dkl
bash sh/train_fixmatch_ikl.sh
bash sh/train_meanteacher_ikl.sh
If you have any questions, feel free to contact us through email (jiequancui@gmail.com) or Github issues. Enjoy!
If you find this code or idea useful, please consider citing our related work:
@article{cui2023decoupled,
title={Decoupled Kullback-Leibler Divergence Loss},
author={Cui, Jiequan and Tian, Zhuotao and Zhong, Zhisheng and Qi, Xiaojuan and Yu, Bei and Zhang, Hanwang},
journal={arXiv preprint arXiv:2305.13948},
year={2023}
}
@inproceedings{cui2021learnable,
title={Learnable boundary guided adversarial training},
author={Cui, Jiequan and Liu, Shu and Wang, Liwei and Jia, Jiaya},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={15721--15730},
year={2021}
}
@ARTICLE{10130611,
author={Cui, Jiequan and Zhong, Zhisheng and Tian, Zhuotao and Liu, Shu and Yu, Bei and Jia, Jiaya},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Generalized Parametric Contrastive Learning},
year={2023},
volume={},
number={},
pages={1-12},
doi={10.1109/TPAMI.2023.3278694}}
@inproceedings{cui2021parametric,
title={Parametric contrastive learning},
author={Cui, Jiequan and Zhong, Zhisheng and Liu, Shu and Yu, Bei and Jia, Jiaya},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={715--724},
year={2021}
}