-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtokenize_retrieve.py
160 lines (134 loc) · 5.85 KB
/
tokenize_retrieve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# coding=utf-8
"""
This script tokenizes queries and then runs retrieval,
while run_retrieval.py uses pre-tokenized queries and only runs retrieval.
"""
import os
import faiss
import torch
import pickle
import logging
import argparse
import numpy as np
from tqdm import tqdm
from transformers import RobertaConfig
from timeit import default_timer as timer
from torch.utils.data import Dataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.sampler import SequentialSampler
from jpq.model import RobertaDot
from jpq.star_tokenizer import RobertaTokenizer
from jpq.dataset import get_collate_function
from jpq.run_retrieval import load_index
class TRECQueryDataset(Dataset):
def __init__(self, query_file_path, max_query_length):
self.tokenizer = RobertaTokenizer.from_pretrained(
"roberta-base", do_lower_case = True, cache_dir=None)
self.text_queries = []
for line in open(query_file_path, 'r'):
qid, query = line.split("\t")
qid, query = int(qid), query.strip()
self.text_queries.append((qid, query))
self.max_query_length = max_query_length
def __len__(self):
return len(self.text_queries)
def __getitem__(self, item):
qid, text = self.text_queries[item]
input_ids = self.tokenizer.encode(
text,
add_special_tokens=True,
max_length=self.max_query_length,
truncation=True)
attention_mask = [1]*len(input_ids)
ret_val = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"id": qid,
}
return ret_val
def query_inference(model, index, args):
query_dataset = TRECQueryDataset(
query_file_path=args.query_file_path,
max_query_length=args.max_query_length
)
model = model.to(args.device)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
dataloader = DataLoader(
query_dataset,
sampler=SequentialSampler(query_dataset),
batch_size=args.batch_size,
collate_fn=get_collate_function(args.max_query_length),
drop_last=False,
)
batch_size = dataloader.batch_size
num_examples = len(dataloader.dataset)
print(" Num examples = %d", num_examples)
print(" Batch size = %d", batch_size)
model.eval()
all_query_ids = []
all_search_results_pids, all_search_results_scores = [], []
for inputs, ids in tqdm(dataloader):
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(args.device)
all_query_ids.extend(ids)
with torch.no_grad():
query_embeds = model(**inputs).detach().cpu().numpy()
batch_results_scores, batch_results_pids = index.search(query_embeds, args.topk)
all_search_results_pids.extend(batch_results_pids.tolist())
all_search_results_scores.extend(batch_results_scores.tolist())
return all_query_ids, all_search_results_scores, all_search_results_pids
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--query_file_path", type=str, required=True)
parser.add_argument("--index_path", type=str, required=True)
parser.add_argument("--query_encoder_dir", type=str, required=True)
parser.add_argument("--output_path", type=str, required=True)
parser.add_argument("--output_format", type=str, choices=["msmarco", "trec"], required=True)
# these two arguments are used simply for converting offset pids to official pids
parser.add_argument("--pid2offset_path", type=str, required=True)
# msmarco doc use D... as document ids, if dataset == "doc", we need to explicitly add "D" as prefix
# preprocess.py shoud have saved this D in the pid2offset.pickle ...
parser.add_argument("--dataset", type=str, choices=["doc", "passage"], required=True)
parser.add_argument("--max_query_length", type=int, default=32)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--topk", type=int, default=100)
parser.add_argument("--gpu_search", action="store_true")
args = parser.parse_args()
if args.gpu_search:
args.device = torch.device("cuda:0")
args.n_gpu = 1
else:
args.device = torch.device("cpu")
args.n_gpu = 0
config_class, model_class = RobertaConfig, RobertaDot
config = config_class.from_pretrained(args.query_encoder_dir)
model = model_class.from_pretrained(args.query_encoder_dir, config=config,)
index = load_index(args.index_path, use_cuda=args.gpu_search, faiss_gpu_index=0)
if not args.gpu_search:
faiss.omp_set_num_threads(32)
all_query_ids, all_search_results_scores, all_search_results_pids = \
query_inference(model, index, args)
if args.dataset == "doc":
pid2offset = pickle.load(open(args.pid2offset_path, 'rb'))
offset2pid = {v:f"D{k}" for k, v in pid2offset.items()}
else:
assert args.dataset == "passage"
pid2offset = {i:i for i in range(8841823)}
offset2pid = {v:k for k, v in pid2offset.items()}
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
with open(args.output_path, 'w') as outputfile:
for qid, scores, poffsets in zip(all_query_ids,
all_search_results_scores, all_search_results_pids):
for idx, (score, poffset) in enumerate(zip(scores, poffsets)):
rank = idx+1
pid = offset2pid[poffset]
if args.output_format == "msmarco":
outputfile.write(f"{qid}\t{pid}\t{rank}\n")
else:
assert args.output_format == "trec"
index_name = os.path.basename(args.index_path)
outputfile.write(f"{qid} Q0 {pid} {rank} {score} JPQ-{index_name}\n")
if __name__ == "__main__":
main()