-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
414 lines (365 loc) · 18.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import json
import os
import random
import re
import warnings
import time
import numpy as np
import pandas as pd
import tensorflow as tf
from tqdm import tqdm
from network import MLPtwoOut
from utils import shuffle, WriteToLogFile, format_time_differ, PlotPowerFDRcurve, \
RecurReadFilePaths, PlotRankCDFcurve, MhtPlot
from identify import Identify
# ====================================================================================================
# tools for training
# {
def WrapLossFunc(lossFuncName, Y, Y_pred):
loss = ''
if lossFuncName == 'BinaryCrossentropy':
loss = tf.keras.losses.binary_crossentropy(Y, Y_pred)
return loss
def WrapOpt(optName, lr_tensor):
opt = ''
if optName in ['RMSProp', 'Adam', 'Adadelta', 'AdagradDA', 'Adagrad', 'Ftrl', 'GradientDescent', 'Momentum',
'ProximalAdagrad', 'ProximalGradientDescent', 'SyncReplicas']:
opt = eval('tf.compat.v1.train.' + optName + 'Optimizer')(learning_rate=lr_tensor)
if optName in ['AdaMax', 'Nadam']:
opt = eval('tf.contrib.opt.' + optName + 'Optimizer')(learning_rate=lr_tensor)
return opt
def train_valid_split(Xdata, Ydata, valid_prop):
train_valid = []
sampleNum = Xdata.shape[0]
cutoff = sampleNum - round(sampleNum * valid_prop)
for d in [Xdata, Ydata]:
train_valid.append(d[:cutoff])
train_valid.append(d[cutoff:])
return train_valid
# }
# ====================================================================================================
# ====================================================================================================
# functions for loading training data
# {
def RandomSample(dataArray, sampleNum):
dataArray = shuffle(dataArray)
sampleTotalNum = dataArray.shape[0]
if sampleTotalNum < sampleNum:
info = 'There are %i muts, but %i muts are needed, thus tiggering randomly sampling with replacement.' % (
sampleTotalNum, sampleNum)
warnings.warn(info, UserWarning)
dataArrayNew = list(dataArray)
diff = sampleNum - sampleTotalNum
for i in range(diff):
oneSample = random.choice(dataArray)
dataArrayNew.append(oneSample)
dataArray = np.array(dataArrayNew)
else:
dataArray = dataArray[:sampleNum]
return dataArray
def ReadStatsFile(inPath, componentStats, region_type, favMutNum=None, hitchMutNum=None, ordinaMutNum=None, ldCf=None):
X_fav, X_hitch, X_ordina = [], [], []
files = RecurReadFilePaths(inPath, files=[])
print('read component stats from '+region_type+' regions ...')
for file in tqdm(files):
df = pd.read_csv(file, sep='\t')
if region_type == 'neutral':
df = df[componentStats]
X_ordina += df.values.tolist()
if region_type == 'sweep':
favPOS = int(file.split('/')[-1].split('_')[0])
df_fav = df[df.POS == favPOS]
df_hitch = df[df.LD >= ldCf]
df_ordina = df[df.LD < ldCf]
df_fav = df_fav[componentStats]
df_hitch = df_hitch[componentStats]
df_ordina = df_ordina[componentStats]
X_fav += df_fav.values.tolist()
X_hitch += df_hitch.values.tolist()
X_ordina += df_ordina.values.tolist()
X_ordina = np.array(X_ordina)
X_ordina = RandomSample(X_ordina, ordinaMutNum)
if region_type == 'neutral':
return X_ordina
if region_type == 'sweep':
X_fav, X_hitch = np.array(X_fav), np.array(X_hitch)
X_fav, X_hitch = RandomSample(X_fav, favMutNum), RandomSample(X_hitch, hitchMutNum)
return X_fav, X_hitch, X_ordina
def GenerateLabel(rowsNum, positive):
if positive:
one_label = [1.0, 0.0]
else:
one_label = [0.0, 1.0]
labels = [one_label] * rowsNum
labels = np.array(labels)
return labels
def LoadTrainData(trainDataPath, argsDict, shuffleSamples=False, save_npz=True):
print('### Load training data ...')
X_H, Y_H, X_O, Y_O = '', '', '', ''
npzFile = trainDataPath + '/trainData.npz'
alreadyLoad = False
if save_npz:
if os.path.exists(npzFile):
npzData = np.load(npzFile, allow_pickle=True)
X_H, Y_H, X_O, Y_O = npzData['X_H'], npzData['Y_H'], npzData['X_O'], npzData['Y_O']
alreadyLoad = True
if not alreadyLoad:
# read component statistics
stats = argsDict['componentStats']
favMutNum, hitchMutNum, ordinaMutNum, ldCf = argsDict['favMutNum'], argsDict['hitchMutNum'], argsDict[
'ordinaMutNum'], argsDict['LDcutoff']
ordinaMutNum_sweep, ordinaMutNum_neut = round(ordinaMutNum / 2), round(ordinaMutNum / 2)
X_fav, X_hitch, X_ordina = ReadStatsFile(trainDataPath + '/sweep_regions',
componentStats=stats,
region_type='sweep',
favMutNum=favMutNum,
hitchMutNum=hitchMutNum,
ordinaMutNum=ordinaMutNum_sweep,
ldCf=ldCf
)
X_ordina_neut = ReadStatsFile(trainDataPath + '/neutral_regions', componentStats=stats, region_type='neutral',
ordinaMutNum=ordinaMutNum_neut
)
X_ordina = np.vstack((X_ordina, X_ordina_neut))
# generate label
Y_fav = GenerateLabel(rowsNum=X_fav.shape[0], positive=True)
Y_hitch = GenerateLabel(rowsNum=X_hitch.shape[0], positive=False)
Y_ordina = GenerateLabel(rowsNum=X_ordina.shape[0], positive=False)
# compose training data
# fav muts and hitch muts
X_H = np.vstack((X_fav, X_hitch))
Y_H = np.vstack((Y_fav, Y_hitch))
# fav muts and ordinary neut muts
X_O = np.vstack((X_fav, X_ordina))
Y_O = np.vstack((Y_fav, Y_ordina))
if save_npz:
np.savez(npzFile.rstrip('.npz'), X_H=X_H, Y_H=Y_H, X_O=X_O, Y_O=Y_O)
if shuffleSamples:
X_H, Y_H = shuffle(X_H, Y_H)
X_O, Y_O = shuffle(X_O, Y_O)
return X_H, Y_H, X_O, Y_O
# }
# ====================================================================================================
def Train(model, train_data, epochs, batch_size, loss, lr, reduce_lr_epochs, early_stop_epochs,
optimizer_H, optimizer_O, modelOutDir, valid_prop=0.1, log_file=None):
"""
Alternatively train classifiers H and O
:param model: classifiers H and O to be trained
:param train_data: training data for classifiers H and O
:param epochs: max epochs
:param batch_size: batch size for mini-batch training
:param loss: loss function
:param lr: learning rate
:param reduce_lr_epochs: when validation loss do not decrease through consecutively the epochs, lr reduce
:param early_stop_epochs:when validation loss do not decrease through consecutively the epochs, training stop
:param optimizer_H: optimizer for classifier H
:param optimizer_O: optimizer for classifier O
:param modelOutDir: directory saving trained model
:param valid_prop: proportion of validation data in train_data
:param log_file: file logging training information
:return:
"""
log_info = '### Training start ...'
print(log_info)
if log_file:
WriteToLogFile(log_file, log_info)
timeStart = time.time()
tf.compat.v1.disable_eager_execution()
# shuffle data and split it into train and validation set
X1_data, Y1_data, X2_data, Y2_data = train_data
X1_data, Y1_data = shuffle(X1_data, Y1_data)
X2_data, Y2_data = shuffle(X2_data, Y2_data)
X1_train, X1_valid, Y1_train, Y1_valid = train_valid_split(X1_data, Y1_data, valid_prop)
X2_train, X2_valid, Y2_train, Y2_valid = train_valid_split(X2_data, Y2_data, valid_prop)
X1_train_sampleNum, X2_train_sampleNum = X1_train.shape[0], X2_train.shape[0]
sampleTotalNum = X1_train_sampleNum if X1_train_sampleNum < X2_train_sampleNum else X2_train_sampleNum
y1_classNum, y2_classNum = Y1_data.shape[1], Y2_data.shape[1]
X, H_pred, O_pred = model.build()
H = tf.compat.v1.placeholder("float", [None, y1_classNum], name="H_true")
O = tf.compat.v1.placeholder("float", [None, y2_classNum], name="O_true")
# loss
H_loss = WrapLossFunc(loss, H, H_pred)
O_loss = WrapLossFunc(loss, O, O_pred)
# learning rate
lr_tensor = tf.Variable(lr, shape=[], trainable=False)
new_lr_tensor = tf.compat.v1.placeholder(tf.float32, shape=[], name="new_lr_tensor")
update_lr = tf.compat.v1.assign(lr_tensor, new_lr_tensor)
# optimizer
optH = WrapOpt(optimizer_H, lr_tensor)
optO = WrapOpt(optimizer_O, lr_tensor)
trainable_vars = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES)
H_opt = optH.minimize(H_loss, var_list=trainable_vars)
O_opt = optO.minimize(O_loss, var_list=trainable_vars)
trainedModelDir = modelOutDir + '/model'
os.makedirs(trainedModelDir, exist_ok=True)
best_model_file = trainedModelDir + '/model'
# run training and log training info
saver = tf.compat.v1.train.Saver(defer_build=False)
with tf.compat.v1.Session() as session:
session.run(tf.compat.v1.global_variables_initializer())
best_loss_epoch_tuple = (-1, 0) # initialization
count_for_training_on_best = 0
new_lr = lr
for epoch in range(1, epochs + 1):
log_info = '==='
print(log_info)
if log_file:
WriteToLogFile(log_file, log_info)
batch_start, batch_end = 0, batch_size
step = 0
info_step = int((sampleTotalNum / 3) / batch_size)
while batch_end < sampleTotalNum:
X1_batch, Y1_batch = X1_train[batch_start:batch_end], Y1_train[batch_start:batch_end]
X2_batch, Y2_batch = X2_train[batch_start:batch_end], Y2_train[batch_start:batch_end]
hopt, H_batch_loss = session.run([H_opt, H_loss], feed_dict={X: X1_batch, H: Y1_batch})
oopt, O_batch_loss = session.run([O_opt, O_loss], feed_dict={X: X2_batch, O: Y2_batch})
batch_start = batch_end
batch_end += batch_size
step += 1
if step % info_step == 0:
log_info = 'Epoch %d/%d %d/%d, loss: H-%f O-%f' % (
epoch, epochs, step * batch_size, sampleTotalNum, H_batch_loss.mean(), O_batch_loss.mean())
print(log_info)
if log_file:
WriteToLogFile(log_file, log_info)
H_train_loss = session.run(H_loss, feed_dict={X: X1_train, H: Y1_train})
O_train_loss = session.run(O_loss, feed_dict={X: X2_train, O: Y2_train})
H_valid_loss = session.run(H_loss, feed_dict={X: X1_valid, H: Y1_valid})
O_valid_loss = session.run(O_loss, feed_dict={X: X2_valid, O: Y2_valid})
H_train_loss, O_train_loss = H_train_loss.mean(), O_train_loss.mean()
H_valid_loss, O_valid_loss = H_valid_loss.mean(), O_valid_loss.mean()
log_info = 'Epoch %d/%d, train_loss: H-%f O-%f valid_loss: H-%f O-%f' % (
epoch, epochs, H_train_loss, O_train_loss, H_valid_loss, O_valid_loss)
print(log_info)
if log_file:
WriteToLogFile(log_file, log_info)
valid_loss = H_valid_loss + O_valid_loss # can have different weights
best_valid_loss, best_epoch = best_loss_epoch_tuple
if best_valid_loss is -1 or valid_loss < best_valid_loss:
log_info = 'Decrease valid_loss from %f to %f, save the newest model.' % (best_valid_loss, valid_loss)
print(log_info)
if log_file:
WriteToLogFile(log_file, log_info)
valid_loss_e04 = round(valid_loss, 4)
best_loss_epoch_tuple = (valid_loss, epoch)
best_H_valid_loss, best_O_valid_loss = H_valid_loss, O_valid_loss
saver.save(session, best_model_file)
else:
log_info = 'Not decrease valid_loss.'
print(log_info)
if log_file:
WriteToLogFile(log_file, log_info)
count_for_training_on_best += 1
if count_for_training_on_best > 3:
# continue to train based on the values of trainable variables of the saved best model
saver.restore(session,
best_model_file) # all of the values of saved (trained) variables have been restored
log_info = 'Training based on the values of trainable variables of the saved best model.'
print(log_info)
if log_file:
WriteToLogFile(log_file, log_info)
count_for_training_on_best = 0
if epoch - best_epoch > reduce_lr_epochs:
# Update learning rate
old_lr = new_lr
new_lr = old_lr * 0.5
session.run(update_lr, feed_dict={new_lr_tensor: new_lr})
# opt.lr = new_lr
log_info = 'Reduce lr from %f to %f.' % (old_lr, new_lr)
print(log_info)
if log_file:
WriteToLogFile(log_file, log_info)
if epoch - best_epoch > early_stop_epochs:
# Stop training
log_info = 'EarlyStopping!'
print(log_info)
if log_file:
WriteToLogFile(log_file, log_info)
break
timeEnd = time.time()
log_info = '### Training done! Taking %s. Epoch %d has the best valid_loss %f(H_valid_loss:%f, O_valid_loss:%f).' \
% (format_time_differ(timeEnd-timeStart), best_loss_epoch_tuple[1], best_loss_epoch_tuple[0],
best_H_valid_loss, best_O_valid_loss)
print(log_info)
if log_file:
WriteToLogFile(log_file, log_info)
def TrainWithArgs(args):
with open(args.hyparams) as f:
hyparams = json.load(f)
# save all of the hyper-params for the model to be trained
os.makedirs(args.modelDir, exist_ok=True)
hyparams['trainDataHyparams']['trainData'] = os.path.abspath(args.trainData)
with open(args.modelDir + '/hyperparams.json', 'w') as f:
f.write(json.dumps(hyparams, sort_keys=True, indent=4))
model_hyparams, train_hyparams, train_data_hyparams = hyparams['modelHyparams'], hyparams['trainHyparams'], \
hyparams['trainDataHyparams']
# load training data
X1_train, Y1_train, X2_train, Y2_train = LoadTrainData(args.trainData, train_data_hyparams)
# load model
featureNum = X1_train.shape[1]
model = MLPtwoOut(featuresNum=featureNum,
batchNormHiddenLayer=train_hyparams['hidden_batchnorm'],
init=train_hyparams['init'],
hiddenLayerActFunc=model_hyparams['hiddenLayerActFunc'],
sharedLayers=model_hyparams['sharedLayers'],
Y1_hiddenLayers=model_hyparams['H_hiddenLayers'],
Y2_hiddenLayers=model_hyparams['O_hiddenLayers'],
Y1_outputLayerNodeNum=model_hyparams['H_outputLayerNodeNum'],
Y1_outputLayerActFunc=model_hyparams['H_outputLayerActFunc'],
Y2_outputLayerNodeNum=model_hyparams['O_outputLayerNodeNum'],
Y2_outputLayerActFunc=model_hyparams['O_outputLayerActFunc']
)
# train model
training_log_file = args.modelDir + '/training.log'
train_cmd = 'python DeepFavored.py train --hyparams %s --modelDir %s --trainData %s ' % (args.hyparams,
args.modelDir,
args.trainData)
if 'testData' in args:
train_cmd += ' --testData '+args.testData
WriteToLogFile(training_log_file, train_cmd)
Train(model=model,
train_data=(X1_train, Y1_train, X2_train, Y2_train),
epochs=train_hyparams['epochs'],
batch_size=train_hyparams['batch_size'],
loss=train_hyparams['loss'],
lr=train_hyparams['lr'],
reduce_lr_epochs=train_hyparams['reduce_lr_epochs'],
early_stop_epochs=train_hyparams['early_stop_epochs'],
optimizer_H=train_hyparams['optimizer_H'],
optimizer_O=train_hyparams['optimizer_O'],
modelOutDir=args.modelDir,
log_file=training_log_file
)
# performance evaluation
if 'testData' in args:
print('### Performance evaluation start ...')
performanceDir = args.modelDir + '/performance'
os.makedirs(performanceDir, exist_ok=True)
if 'rankCDF_powerFDR_data' in os.listdir(args.testData):
dfOutPath = args.testData+'/rankCDF_powerFDR_data.df.out'
os.makedirs(dfOutPath, exist_ok=True)
files = RecurReadFilePaths(args.testData + '/rankCDF_powerFDR_data', files=[])
df_in_out_files = []
for infile in files:
outfile = re.sub('/rankCDF_powerFDR_data/', '/rankCDF_powerFDR_data.df.out/', infile)
outPath = '/'.join(outfile.split('/')[:-1])
os.makedirs(outPath, exist_ok=True)
df_in_out_files.append((infile, outfile))
Identify(args.modelDir, df_in_out_files)
PlotRankCDFcurve(dfOutPath, performanceDir+'/rankCDFcurve.png')
PlotPowerFDRcurve(dfOutPath, performanceDir + '/powerFDRcurve.png')
if 'mht_plot_data' in os.listdir(args.testData):
dfOutPath = args.testData+'/mht_plot_data.df.out'
os.makedirs(dfOutPath, exist_ok=True)
files = RecurReadFilePaths(args.testData + '/mht_plot_data', files=[])
df_in_out_files = []
for infile in files:
outfile = re.sub('/mht_plot_data/', '/mht_plot_data.df.out/', infile)
outPath = '/'.join(outfile.split('/')[:-1])
os.makedirs(outPath, exist_ok=True)
df_in_out_files.append((infile, outfile))
Identify(args.modelDir, df_in_out_files)
MhtPlot(dfOutPath, performanceDir + '/mht_plot')
print('### Performance evaluation done!')
if __name__ == '__main__':
pass