-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
139 lines (104 loc) · 4.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os, sys
import argparse
import cv2
import numpy as np
import json
import logging
import copy
from datetime import datetime
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
from tensorboardX import SummaryWriter
import unet
from dataset import CarotidSet
def train(args, model, criterion, optimizer, dataloader, ep, writer):
model.train()
running_loss = 0
for idx, data in enumerate(dataloader):
train_sample, ground_truth = data
# train_sample = train_sample.cuda()
# ground_truth = ground_truth.cuda()
logits = model(train_sample)
loss = criterion(logits, ground_truth)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
if (idx + 1) % args.print_every == 0:
running_loss /= len(dataloader)
print(f'[Epoch{ep}/{args.max_epoch}] [{idx}/{len(dataloader)}] Loss: {running_loss: .4ef}')
writer.add_scalar('train/loss', running_loss, ep*len(dataloader)+idx)
running_loss = 0.0
def test(args, model, testloader, ep, writer):
model.eval()
acc = 0.
running_acc_li = 0.
running_acc_ma = 0.
with torch.no_grad():
for idx, (data) in enumerate(testloader):
test_sample, gt_li, gt_ma = data
logits = model(test_sample)
running_iou_li += calc_iou(logits[: , 0:1, :, :], gt_li, thres=0.5)
running_iou_ma += calc_iou(logits[: , 1:2, :, :], gt_ma, thres=0.5)
# todo: implementt calc_iou, calc_acc
running_acc_li += calc_acc(logits[: , 0:1, :, :], gt_li, thres=0.5)
running_acc_ma += calc_acc(logits[: , 1:2, :, :], gt_ma, thres=0.5)
epoch_iou_li = running_iou_li / len(testloader)
epoch_iou_ma = running_iou_ma / len(testloader)
epoch_acc_li = running_acc_li / len(testloader)
epoch_acc_ma = running_acc_ma / len(testloader)
print("{0} - [{1}-Epoch-{2}] Iou(LI): {3:.2f}".format(
datetime.now(), 'Validation', ep, epoch_iou_li.item()*100.0))
print("{0} - [{1}-Epoch-{2}] Iou(MA): {3:.2f}".format(
datetime.now(), 'Validation', ep, epoch_iou_ma.item()*100.0))
print('='*80)
writer.add_scalar('IoU/val/li', epoch_iou_li.item()*100.0, ep*len(testloader))
writer.add_scalar('IoU/val/ma', epoch_iou_ma.item()*100.0, ep*len(testloader))
writer.add_scalar('ACC/val/li', epoch_acc_li.item()*100.0, ep*len(testloader))
writer.add_scalar('ACC/val/ma', epoch_acc_ma.item()*100.0, ep*len(testloader))
return (epoch_iou_li.item() + epoch_iou_ma.item())/2
def opt():
parser = argparse.ArgumentParser()
parser.add_argument('--root', type=str, default='small_dataset', help='path to dataset')
parser.add_argument('--json_train', type=str, default='gTruth_pp_small.json', help='path to train dataset')
parser.add_argument('--max_epoch', type=int, default=200, help = 'max train epoch')
parser.add_argument('--optimizer', type=str, default='sgd', help = 'optimizer')
parser.add_argument('--batch_size', type=int, default=2048, help = 'batch size')
parser.add_argument('--num_workers', type=int, default=16, help = 'the number of workers')
parser.add_argument('--log_dir', type=str, default='./train_log_modular')
parser.add_argument('--lr_drop', type=int, default=180)
return parser.parse_args()
def main():
args = opt()
model = unet.CCANet(3, 2)
criterion = nn.BCEWithLogitsLoss()
if args.optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=1e-4)
elif args.optimizer == 'adam':
optimizer = optim.Adam(model.parameters(), lr=1e-4)
else:
raise ValueError
carotid_transform = transforms.Compose(
[
transforms.ToTensor(),
]
)
# train_set = CarotidSet(args.root, args.json_train, transform=carotid_transform, flip=False, rotation=False, translation=False)
# next time
# trainloader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
trainloader = None
testloader = None
writer = SummaryWriter(args.log_dir)
best_acc = 0.0
for ep in range(args.max_epoch):
train(args, model, criterion, optimizer, trainloader, ep, writer)
if (ep+1) % args.test_every == 0:
acc = test(args, model, testloader, ep, writer)
if best_acc < acc:
best_acc = acc
best_model = copy.deepcopy(model.state_dict())
if __name__ == '__main__':
main()