-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathglobal_local_popar_swin_ddp.py
523 lines (405 loc) · 22.2 KB
/
global_local_popar_swin_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# popar+global+local
# CUDA_VISIBLE_DEVICES="4,5,6,7" python -m torch.distributed.launch --nproc_per_node 4 global_local_popar_swin_ddp.py
import argparse
import math
import os
import sys
import time
import config
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from datasets import Popar_chestxray, build_md_transform
from einops import rearrange
from swin_transformer import SwinTransformer
from timm.utils import ModelEma, NativeScaler, get_state_dict
from torch import optim as optim
from torch.utils.tensorboard import SummaryWriter
# from utils.build_loader import build_loader_NIHchest
from utils.build_loader_global_local import build_loader_global_local
from utils.config import get_config
from utils.utils_pec import AverageMeter, cosine_scheduler, save_model
torch.autograd.set_detect_anomaly(True)
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--batch_size', type=int, default=8, help='batch_size')
parser.add_argument('--num_workers', type=int, default=8, help='num of workers to use')
parser.add_argument('--img_size', type=int, default=448, help='input image size')
parser.add_argument('--patch_size', type=int, default=32)
parser.add_argument('--lr', type=float, default=0.1, help='learning rate')
parser.add_argument('--epochs', type=int, default=400, help='number of training epochs')
# parser.add_argument('--gpu', dest='gpu', default="1", type=str, help="gpu index")
parser.add_argument('--task', dest='task', default="global_local_consis", type=str)
parser.add_argument('--dataset', dest='dataset', default="nih14", type=str)
parser.add_argument('--weight', dest='weight', default=None)
parser.add_argument('--depth', dest='depth', type=str, default="2,2,18,2")
parser.add_argument('--heads', dest='heads', type=str, default="4,8,16,32")
parser.add_argument("--mlp", default="8192-8192-8192")
parser.add_argument('--in_channel', dest='in_channel', default=3, type=int, help="input color channel")
parser.add_argument('--output', type=str, default='/ssd2/zhouziyu/ssl/github/PEAC/output/')
parser.add_argument('--teacher_m', type=float, default=0.999, help="""Base EMA
parameter for teacher update. The value is increased to 1 during training with cosine schedule.
We recommend setting a higher value with small batches: for example use 0.9995 with batch size of 256.""")
parser.add_argument("--local_rank", type=int)
# args = parser.parse_args()
args = parser.parse_args()
get_cfg = get_config(args)
config = get_cfg.config
return args, config, get_cfg
# device = torch.device(f'cuda:{args.gpu}' if torch.cuda.is_available() else 'cpu')
def step_decay(step, conf,warmup_epochs = 5):
lr = conf.TRAIN.LR
progress = (step - warmup_epochs) / float(conf.TRAIN.EPOCHS - warmup_epochs)
progress = np.clip(progress, 0.0, 1.0)
#decay_type == 'cosine':
lr = lr * 0.5 * (1. + np.cos(np.pi * progress))
if warmup_epochs:
lr = lr * np.minimum(1., step / warmup_epochs)
return lr
class _SwinTransformer(SwinTransformer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
assert self.num_classes == 0
def forward(self, x):
x = self.patch_embed(x)
B, L, _ = x.shape
if self.ape: # absolute position embedding
x = x + self.absolute_pos_embed
x = self.pos_drop(x) # Dropout
for layer in self.layers:
x = layer(x)
x = self.norm(x) # Layer Normalization
# x = x.transpose(1, 2)
# B, C, L = x.shape
# H = W = int(L ** 0.5)
# x = x.reshape(B, C, H, W)
return x
@torch.jit.ignore
def no_weight_decay(self):
return super().no_weight_decay() | {'mask_token'}
class PEC_Model(nn.Module):
def __init__(self, config, hidden_size = 128, num_classes = 196, depth=[ 2, 2, 18, 2 ],heads=[ 4, 8, 16, 32 ]):
super(PEC_Model, self).__init__()
self.num_classes = num_classes
self.hidden_size = hidden_size
self.embed_dim = hidden_size*8 # encoder输出层维度
self.depth = depth
self.heads = heads
self.swin_model = _SwinTransformer(img_size=448,patch_size=4,in_chans=3,num_classes=0,embed_dim=self.hidden_size,depths=self.depth,num_heads= self.heads,
window_size=7,mlp_ratio=4.,qkv_bias=True,qk_scale=None,drop_rate=0,drop_path_rate=0.1,ape=False,patch_norm=True,use_checkpoint=False)
self.mlp = self.MLP(config.MODEL.MLP, self.embed_dim)
self.mlp_local = self.MLP(config.MODEL.MLPLOCAL, self.embed_dim)
# popar分类和复原头
self.head = nn.Linear(1024 , self.num_classes,bias=False)
self.bias = nn.Parameter(torch.zeros(self.num_classes))
self.head.bias = self.bias
self.decoder = nn.Sequential(
nn.Conv2d(
in_channels=1024,
out_channels=32 ** 2 * 3, kernel_size=1),
nn.PixelShuffle(32)
)
def forward(self, img_x, perm): # img_x用于popar输入
B,C,H,W = img_x.shape
img_x = rearrange(img_x, 'b c (h p1) (w p2)-> b (h w) c p1 p2', p1=32, p2=32, w=14,h=14) # 切分后patch大小为32*32,patch个数14*14
# print(img_x.shape)
for i in range(B):
img_x[i] = img_x[i,perm[i],:,:,:] # perm:[80,196],其中有1/2的概率patch是打乱顺序的
img_x = rearrange(img_x, 'b (h w) c p1 p2 -> b c (h p1) (w p2)', p1=32, p2=32, w=14,h=14) # img_x: [80,3,448,448]
out = self.swin_model(img_x) # out B,H*W,C (80,196,1024)
B, L, C = out.shape
cls_feature = out.reshape(-1, 1024)
order_out = self.head(cls_feature)
restor_feature = out.transpose(1, 2)
H = W = int(L ** 0.5)
restor_feature = restor_feature.reshape(B, C, H, W)
decoder_out = self.decoder(restor_feature)
avg_out = out.mean(dim=1)
global_embd = self.mlp(avg_out)
local_embd = self.mlp_local(out.flatten(start_dim=0, end_dim=1))
local_embd = local_embd.view(B, L, -1)
return order_out, decoder_out, global_embd, local_embd
def MLP(self, mlp, embed_dim): # 1024-8192-8192-8192
mlp_spec = f"{embed_dim}-{mlp}"
layers = []
f = list(map(int, mlp_spec.split("-")))
for i in range(len(f) - 2):
layers.append(nn.Linear(f[i], f[i + 1]))
layers.append(nn.LayerNorm(f[i + 1]))
layers.append(nn.ReLU(True))
layers.append(nn.Linear(f[-2], f[-1], bias=False))
return nn.Sequential(*layers)
def build_model(conf, device):
start_epoch = 1
if conf.MODEL.WEIGHT is None:
model = PEC_Model(config=conf)
optimizer = optim.AdamW(model.parameters(), eps=1e-8, betas=(0.9, 0.999),
lr=conf.TRAIN.LR, weight_decay=0.05)
else:
student = PEC_Model(config=conf)
teacher = PEC_Model(config=conf)
checkpoint = torch.load(conf.MODEL.WEIGHT, map_location='cpu')
state_dict_s = {k.replace("module.", ""): v for k, v in checkpoint['student'].items()}
student.load_state_dict(state_dict_s)
state_dict_t = {k.replace("module.", ""): v for k, v in checkpoint['teacher'].items()}
teacher.load_state_dict(state_dict_t)
start_epoch = checkpoint['epoch'] + 1
optimizer = optim.AdamW(student.parameters(), eps=1e-8, betas=(0.9, 0.999),
lr=conf.TRAIN.LR, weight_decay=0.05)
loss_scaler = NativeScaler()
if conf.MODEL.WEIGHT is None:
model = model.to(device)
return model, optimizer,loss_scaler,start_epoch
else:
student = student.to(device)
teacher = teacher.to(device)
return student, teacher, optimizer,loss_scaler,start_epoch
def train(train_loader, student, teacher, momentum_schedule, optimizer, epoch, loss_scaler, conf, writer, log_writer):
"""one epoch training"""
student.train(True)
batch_time = AverageMeter()
losses = AverageMeter()
global_losses = AverageMeter()
restor_losses = AverageMeter()
order_losses = AverageMeter()
local_losses = AverageMeter()
end = time.time()
ce_loss = nn.CrossEntropyLoss()
mse_loss =nn.MSELoss()
for idx, (patch1, patch2, gt_patch1, randperm, orderperm, index1, index2, shuffle) in enumerate(train_loader):
bsz = patch1.shape[0]
patch1 = patch1.cuda(non_blocking=True)
patch2 = patch2.cuda(non_blocking=True)
gt_patch1 = gt_patch1.cuda(non_blocking=True)
randperm = randperm.long().cuda(non_blocking=True)
orderperm = orderperm.long().cuda(non_blocking=True)
# print(randperm.shape)
pred_order1_s, pred_restore1_s, global_embd1_s, out1_s = student(torch.cat([patch1,patch2]), torch.cat([randperm,orderperm])) # pred_order1_s [36*196, 196]
_, _, global_embd2_t, out2_t = teacher(torch.cat([patch2,patch1]), torch.cat([orderperm,randperm]))
# _, _, global_embd2_s, out2_s = student(patch2, orderperm)
# _, _, global_embd1_t, out1_t = teacher(patch1, randperm)
global_embd1_s = F.normalize(global_embd1_s, p=2.0, dim=1, eps=1e-12, out=None) # embedding1:[B,196,1024], global_embd1:[B,8192]
global_embd2_t = F.normalize(global_embd2_t, p=2.0, dim=1, eps=1e-12, out=None)
# print(len(global_embd2))
randperm_reshape = randperm.reshape(-1)
# print(pred_restore1_s.shape)
# print(gt_patch1.shape)
gt_patch1 = gt_patch1.reshape(pred_restore1_s[:bsz].shape) # pred_restore1_s [2B,3,448,448], only patch1 add noise
local_loss = torch.tensor([0.0]).cuda()
if not shuffle.all():
not_shuffle = (1-shuffle).bool()
local_loss += mse_loss(out1_s[:bsz][not_shuffle][index1[not_shuffle]], out2_t[:bsz][not_shuffle][index2[not_shuffle]]) # patch1 and patch2 corresponding local patches
local_loss += mse_loss(out2_t[bsz:2*bsz][not_shuffle][index1[not_shuffle]], out1_s[bsz:2*bsz][not_shuffle][index2[not_shuffle]])
# print(randperm_reshape.shape)
# print(pred_order1_s.shape)
order_loss = ce_loss(pred_order1_s[:pred_order1_s.shape[0]//2], randperm_reshape) # only compute patch order loss for student branch
restore_loss = mse_loss(pred_restore1_s[:bsz], gt_patch1) # only compute patch appearance loss for student branch
global_loss = mse_loss(global_embd1_s, global_embd2_t)
loss = order_loss + restore_loss + global_loss*1e5 + local_loss
if not math.isfinite(loss.item()):
print("Loss is {}, stopping training".format(loss.item()), file=log_writter)
sys.exit(1)
# updata metric
order_losses.update(order_loss.item(), bsz)
restor_losses.update(restore_loss.item(), bsz)
global_losses.update(global_loss.item(), bsz)
local_losses.update(local_loss.item(), bsz)
losses.update(loss.item(), bsz)
writer.add_scalar('train/train order loss', order_losses.val, epoch*len(train_loader)+idx)
writer.add_scalar('train/train restore loss', restor_losses.val, epoch*len(train_loader)+idx)
writer.add_scalar('train/train global loss', global_losses.val, epoch*len(train_loader)+idx)
writer.add_scalar('train/train local loss', local_losses.val, epoch*len(train_loader)+idx)
optimizer.zero_grad()
# optimizer = nn.DataParallel(optimizer)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss, optimizer, clip_grad=None,
parameters=student.parameters(), create_graph=is_second_order)
# EMA update for the teacher
it = len(train_loader)*epoch+idx
with torch.no_grad():
m = momentum_schedule[it] # momentum parameter
for param_q, param_k in zip(student.module.parameters(), teacher.parameters()):
param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
torch.cuda.synchronize()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print info
if (idx + 1) % 40 == 0:
print('Train: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'lr {lr}\t'
'Order loss {orderloss.val} ({orderloss.avg})\t'
'Restore loss {restorloss.val} ({restorloss.avg})'
'Global loss {globalloss.val} ({globalloss.avg})\t'
'Local loss {localloss.val} ({localloss.avg})\t'
'Total loss {ttloss.val:.3f} ({ttloss.avg:.3f})'.format(
epoch, idx + 1, len(train_loader), batch_time=batch_time,
lr=optimizer.param_groups[0]['lr'],
orderloss=order_losses, restorloss=restor_losses,
globalloss=global_losses, localloss=local_losses, ttloss=losses),
file=log_writter)
log_writter.flush()
return losses.avg
def test(test_loader, student, teacher, conf, epoch, writer, log_writter):
"""one epoch training"""
student.eval()
teacher.eval()
matches = 0
total = 0
ttloss = 0
mse_loss =nn.MSELoss()
ce_loss = nn.CrossEntropyLoss()
restore_losses = AverageMeter()
global_losses = AverageMeter()
local_losses = AverageMeter()
order_losses = AverageMeter()
tt_losses = AverageMeter()
with torch.no_grad():
for idx, (patch1, patch2, gt_patch1, randperm, orderperm, index1, index2, shuffle) in enumerate(test_loader):
bsz = patch1.shape[0]
patch1 = patch1.cuda(non_blocking=True)
patch2 = patch2.cuda(non_blocking=True)
gt_patch1 = gt_patch1.cuda(non_blocking=True)
randperm = randperm.cuda(non_blocking=True)
pred_order1_s, pred_restore1_s, global_embd1_s, out1_s = student(patch1, randperm)
_, _, global_embd2_t, out2_t = teacher(patch2, orderperm)
_, _, global_embd2_s, out2_s = student(patch2, orderperm)
_, _, global_embd1_t, out1_t = teacher(patch1, randperm)
global_embd1_s = F.normalize(global_embd1_s, p=2.0, dim=1, eps=1e-12, out=None) # embedding1:[B,196,1024], global_embd1:[B,8192]
global_embd2_t = F.normalize(global_embd2_t, p=2.0, dim=1, eps=1e-12, out=None)
global_embd2_s = F.normalize(global_embd2_s, p=2.0, dim=1, eps=1e-12, out=None)
global_embd1_t = F.normalize(global_embd1_t, p=2.0, dim=1, eps=1e-12, out=None)
out1_s = F.normalize(out1_s, p=2.0, dim=1, eps=1e-12, out=None) # out:[B,196,1024]
out2_t = F.normalize(out2_t, p=2.0, dim=1, eps=1e-12, out=None)
out2_s = F.normalize(out2_s, p=2.0, dim=1, eps=1e-12, out=None)
out1_t = F.normalize(out1_t, p=2.0, dim=1, eps=1e-12, out=None)
global_loss = mse_loss(global_embd1_s, global_embd2_t)+mse_loss(global_embd2_s, global_embd1_t)
global_losses.update(global_loss.item(), bsz)
gt_patch1 = gt_patch1.reshape(pred_restore1_s.shape)
restore_loss = mse_loss(pred_restore1_s, gt_patch1)
restore_losses.update(restore_loss.item(), bsz)
order_loss = ce_loss(pred_order1_s, randperm.reshape(-1))
order_losses.update(order_loss.item(), bsz)
# local_loss = 0
# B, L = index1.shape
# actual_l = 0 # index填充1000前实际长度
# for i in range(B):
# if not shuffle[i]:
# for j in range(L):
# if index1[i, j] != 1000:
# # a = (randperm[i]==index1[i, j]).nonzero() # 找出crop1打乱patch前的次序
# actual_l+=1
# local_loss += mse_loss(out1_s[i,index1[i,j],:], out2_t[i,index2[i,j],:])
# local_loss += mse_loss(out1_t[i,index1[i,j],:], out2_s[i,index2[i,j],:])
local_loss = 0.0
if not shuffle.all():
not_shuffle = (1-shuffle).bool()
local_loss = local_loss + mse_loss(out1_s[not_shuffle][index1[not_shuffle]], out2_t[not_shuffle][index2[not_shuffle]])
local_loss = local_loss + mse_loss(out1_t[not_shuffle][index1[not_shuffle]], out2_s[not_shuffle][index2[not_shuffle]])
local_loss = local_loss/2
local_losses.update(local_loss, bsz)
loss = order_loss + restore_loss + global_loss*1e5 + local_loss
tt_losses.update(loss, bsz)
tp1 = pred_order1_s.argmax(dim=1)
randperm = randperm.reshape(-1)
# print("predicted order: ", tp1, file=log_writter)
# print("gt order: ", randperm, file=log_writter)
matches += (tp1 == randperm).sum()
total += randperm.shape[0]
# print("in test", randperm.shape[0])
# if conf.debug_mode:
# break
#matches = matches.item()
accuracy = matches / total
writer.add_scalar('val/test global loss', global_losses.avg, epoch)
writer.add_scalar('val/test local loss', local_losses.avg, epoch)
writer.add_scalar('val/test restor loss', restore_losses.avg,epoch)
writer.add_scalar('val/test accuracy', accuracy,epoch)
writer.add_scalar('val/test total loss', tt_losses.avg,epoch)
return accuracy, restore_losses.avg, global_losses.avg, local_losses.avg, tt_losses.avg
def main(conf, log_writter):
local_rank = conf.LOCAL_RANK
print(local_rank)
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl')
device = torch.device('cuda', local_rank)
writer = SummaryWriter(comment='glocal_local_popar')
# build student and teacher model
if conf.MODEL.WEIGHT is None:
student, optimizer,loss_scaler,start_epoch = build_model(conf, device)
teacher,_,_,_ = build_model(conf, device)
for param_q, param_k in zip(student.parameters(), teacher.parameters()):
param_k.data.mul_(0).add_(param_q.detach().data)
else:
student,teacher, optimizer,loss_scaler,start_epoch = build_model(conf, device)
print(student, file=log_writter)
# there is no back propagation through the teacher, so no need for gradients
for p in teacher.parameters():
p.requires_grad = False
student = DDP(student, device_ids=[local_rank], output_device=local_rank)
# build dataloader
dataset_train, dataset_val, data_loader_train, data_loader_val = build_loader_global_local(conf, ddp=True)
# momentum parameter is increased to 1. during training with a cosine schedule
momentum_schedule = cosine_scheduler(conf.TRAIN.TEACHER_M, 1,
conf.TRAIN.EPOCHS, len(data_loader_train))
# start training
minloss = 1000
for epoch in range(start_epoch, conf.TRAIN.EPOCHS + 1):
time1 = time.time()
data_loader_train.sampler.set_epoch(epoch)
data_loader_val.sampler.set_epoch(epoch)
lr_ = step_decay(epoch,conf)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_
# if epoch==1:
# accuracy, restor_losses, global_losses, local_losses, ttloss = test(data_loader_val, student, teacher, conf, epoch, writer, log_writter)
# print('------validation-----', file=log_writter)
# print('Accuracy: {}. Restoration loss: {} Global loss: {} Lobal loss: {}'.format(accuracy, restor_losses, global_losses, local_losses), file=log_writter)
# if ttloss<minloss:
# save_file = os.path.join(conf.MODEL.OUTPUT, 'best.pth')
# save_model(student, teacher, optimizer, conf.TRAIN.EPOCHS, save_file, log_writter)
# print('Successfully saved the best model.', file=log_writter)
loss = train(data_loader_train, student, teacher, momentum_schedule, optimizer, epoch, loss_scaler, conf, writer, log_writter)
time2 = time.time()
print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1),file = log_writter)
# tensorboard logger
print('loss: {}@Epoch: {}'.format(loss,epoch),file = log_writter)
print('learning_rate: {},{}'.format(optimizer.param_groups[0]['lr'],epoch),file = log_writter)
log_writter.flush()
if epoch % 10 == 0 or epoch == 1:
# if epoch % 30 == 0:
# save_file = os.path.join(conf.MODEL.OUTPUT, 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch))
# save_model(student, teacher, optimizer, conf, epoch, save_file)
print('------validation-----', file=log_writter)
accuracy, restor_losses, global_losses, local_losses, ttloss = test(data_loader_val, student, teacher, conf, epoch, writer, log_writter)
print('Accuracy: {}. Restoration loss: {} Global loss: {} Lobal loss: {}'.format(accuracy, restor_losses, global_losses, local_losses), file=log_writter)
log_writter.flush()
if ttloss<minloss:
save_file = os.path.join(conf.MODEL.OUTPUT, 'best.pth')
save_model(student, teacher, optimizer, epoch, save_file, log_writter)
print('Successfully saved the best model.', file=log_writter)
# save the last model
if epoch % 100 == 0:
save_file = os.path.join(conf.MODEL.OUTPUT, f'epoch{epoch}.pth')
save_model(student, teacher, optimizer, epoch, save_file, log_writter)
print('Successfully saved the last model.', file=log_writter)
log_writter.flush()
# accuracy, restor_losses = test(data_loader_val, student, epoch, writer)
# print('Accuracy: {}. Restoration loss: {}'.format(accuracy, restor_losses), file=conf.log_writter)
if __name__ == '__main__':
args, cfg, get_cfg = parse_option()
local_rank = args.local_rank
get_cfg.display()
log_writter = get_cfg.log_writter
# if cfg.TRAIN.GPU is not None:
# os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
main(cfg, log_writter)
# for epoch in range(1, cfg.TRAIN.EPOCHS + 1):
# lr_ = step_decay(epoch,cfg)
# print(lr_)