forked from mbhenaff/spectral-lib
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGraphMaxPooling.lua
89 lines (71 loc) · 2.47 KB
/
GraphMaxPooling.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
require 'nn'
local GraphPooling, parent = torch.class('nn.GraphPooling', 'nn.Module')
function GraphPooling:__init(clusters, type)
parent.__init(self)
self.clusters = clusters
self.nClusters = clusters:size(1)
assert(self.nClusters <= 1024)
self.poolSize = clusters:size(2)
self.output = torch.Tensor(self.nClusters)
self.indices = torch.Tensor(self.nClusters)
if type == 'max' then
self.pooltype = 1
elseif type == 'avg' then
self.pooltype = 2
end
self:reset()
end
function GraphPooling:updateOutput(input)
if input:nDimension() == 3 then
self.output:resize(input:size(1), input:size(2), self.nClusters)
self.indices:resize(input:size(1), input:size(2), self.nClusters)
elseif input:nDimension() == 2 then
self.output:resize(input:size(1), self.nClusters)
self.indices:resize(input:size(1), self.nClusters)
else
error('wrong number of dimensions')
end
self.output:zero()
self.indices:zero()
-- fprop_cpu(input, self.output, self.clusters, self.indices)
libspectralnet.graph_pool_fprop(input, self.output, self.clusters, self.indices, self.pooltype)
return self.output
end
function GraphPooling:updateGradInput(input, gradOutput)
self.gradInput:resize(input:size())
self.gradInput:zero()
-- bprop_cpu(self.gradInput, gradOutput, self.indices)
libspectralnet.graph_pool_bprop(self.gradInput, gradOutput, self.indices, self.clusters, self.pooltype)
return self.gradInput
end
function fprop_cpu(input, output, clusters, indices)
local nClusters = clusters:size(1)
local poolsize = clusters:size(2)
local c = torch.Tensor(poolsize)
local indx = torch.Tensor(poolsize)
for k = 1,input:size(1) do
for n = 1,input:size(2) do
for i = 1,nClusters do
for j = 1,poolsize do
c[j] = input[k][n][clusters[i][j]]
indx[j] = clusters[i][j]
end
local s,ix = torch.sort(c,true)
output[k][n][i] = s[1]
indices[k][n][i] = indx[ix[1]]
end
end
end
end
function bprop_cpu(gradInput, gradOutput, indices)
local nClusters = gradOutput:size(3)
gradInput:zero()
for k = 1,gradInput:size(1) do
for n = 1,gradInput:size(2) do
for i = 1,nClusters do
-- local ix = indices[k][n][i]
-- gradInput[k][n][ix] = gradInput[k][n][ix] + gradOutput[k][n][i]
end
end
end
end