-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
44 lines (40 loc) · 1.34 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
import io
from setuptools import setup, find_packages
def read(fname):
with io.open(os.path.join(os.path.dirname(__file__), fname), encoding="utf-8") as f:
return f.read()
setup(
name="moinn",
version="0.0.1",
author="Jonas Lederer, Michael Gastegger, Kristof T. Schütt, "
"Michael Kampffmeyer, Klaus-Robert Müller, Oliver T. Unke",
email="jonas.lederer@tu-berlin.de",
url="https://github.com/jnsLs/MoINN",
packages=find_packages("src"),
scripts=[
"src/scripts/moinn_train.py",
"src/scripts/moinn_eval_qm9.py",
],
package_dir={"": "src"},
python_requires=">=3.6",
install_requires=[
"torch==1.13.1",
"numpy==1.23.3",
"ase>=3.18",
"h5py",
"tensorboard",
"tqdm",
"rdkit",
"networkx",
"schnetpack@git+https://github.com/atomistic-machine-learning/schnetpack@schnetpack1.0#egg=prompt-toolkit-1.0.0"
],
extras_require={},
license="MIT",
description="MoINN - Automatic Identification of Chemical Moieties",
long_description="""
MoINN aims to automatically identify chemical moieties (molecular building blocks) from machine learned
representations, enabling a variety of applications beyond property prediction, which otherwise rely on
expert knowledge.
""",
)