-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocessing.py
54 lines (44 loc) · 2.04 KB
/
processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import pandas as pd
from dataset import TimeSeriesDataset
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
class Processing:
def __init__(self,
dataframe,
target_columns=None,
scaler="MinMax",
test_size=0.2,
n_forecast = 35064,
seq_len=24,
batch_size = 32):
if target_columns is None:
target_columns = ["PM25", "PM10", "SO2", "NO2"]
self.df = dataframe
self.target_columns = target_columns
self.n_forecast = n_forecast
self.scaler = scaler
self.test_size = test_size
self.seq_len = seq_len
self.batch_size = batch_size
self.normalized_data = None
def scaling(self):
# imputation
self.df.interpolate(method='linear', inplace=True)
self.df.fillna(self.df.median(), inplace=True)
if self.scaler == "MinMax":
minmax = MinMaxScaler()
self.normalized_data = pd.DataFrame(minmax.fit_transform(self.df.values),
columns=self.df.columns,
index=self.df.index)
def dataloader(self):
ts_train, ts_test = train_test_split(self.normalized_data[:self.n_forecast], self.test_size=0.2, shuffle=False)
seq_len = 24 # per 1 hour
bs = 32 # (8,16,32,64)
train_set = TimeSeriesDataset(ts_train, self.target_columns, self.seq_len)
train_loader = DataLoader(train_set, batch_size=self.batch_size)
test_set = TimeSeriesDataset(ts_test, self.target_columns, self.seq_len)
test_loader = DataLoader(test_set, batch_size=self.batch_size)
forecast_set = TimeSeriesDataset(self.normalized_data[self.n_forecast:], self.target_columns, seq_len)
forecast_loader = DataLoader(forecast_set, batch_size=bs)
return train_loader, test_loader, forecast_loader